【每日一题Day121】LC1139最大的以 1 为边界的正方形 | 前缀和数组 + 枚举

最大的以 1 为边界的正方形【LC1139】

给你一个由若干 01 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0

写了50分钟写出来了 思路是对的 但就是不够清晰 并且想着先写再说 然后越写越有点乱 感觉是个坏习惯 以后还是得想清楚了再写 不然好浪费时间呐

写出来了还是心满意足的 java时间2ms 100%

  • 思路:

    • 使用前缀和数组记录每个位置向左和向上连续1的个数,记为 r o w s [ i ] [ j ] rows[i][j] rows[i][j] c o l s [ i ] [ j ] cols[i][j] cols[i][j]

    • 然后使用变量a记录当前成立的正方形的最大边长,枚举正方形的每个右上顶点 ( i , j ) (i,j) (i,j),其向左连续1的个数为 r o w s [ i ] [ j ] rows[i][j] rows[i][j],当该正方形的边长大于 a a a时才会对结果有影响,因此当 r o w s [ i ] [ j ] > a rows[i][j] \gt a rows[i][j]>a时,枚举该正方形可能的边长 b ∈ ( a , r o w s [ i ] [ j ] ] ) b \in (a,rows[i][j]]) b(a,rows[i][j]]),判断该正方形是否合法。

    • 该正方形的四个顶点如下图所示,如果B顶点向上连续1的个数和向左连续1的个数大于等于b,并且C顶点向上连续1的个数大于等于b,那么该正方形成立

      image-20230217102323194

  • 实现

    class Solution {
        public int largest1BorderedSquare(int[][] grid) {
            int n = grid.length;
            int m = grid[0].length;
            int[][] rows = new int[n + 1][m + 1];
            int[][] cols = new int[n + 1][m + 1];
            for (int i = 0; i < n; i++){
                for (int j = 0; j < m; j++){
                    if (grid[i][j] == 1){
                        rows[i + 1][j + 1] = rows[i + 1][j] + 1;
                    }                
                }
            }
            for (int i = 0; i < m; i++){
                for (int j = 0; j < n; j++){
                    if (grid[j][i] == 1){
                        cols[j + 1][i + 1] = cols[j][i + 1] + 1;
                    }                
                }
            }
            int a = 0;// 边长
            for (int i = 1; i <= n ; i++){
                for (int j = 1; j <= m ; j++){
                    for (int b = rows[i][j]; b > a; b--){
                        if (b > a && i + b - 1 <= n 
                            && rows[i + b - 1][j] >= b 
                            && cols[i + b - 1][j - b + 1] >= b 
                            && cols[i + b - 1][j] >= b){
                            a = b;
                            break;
                        }
                    }
                    
                }
            }
            return a * a;
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
      • 空间复杂度: O ( n 2 ) O(n^2) O(n2)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值