Algorithms 练习1.1.13

要求编写将M行N列的二维数组的转置矩阵输出的程序,在此采用了String
数组,程序如下:

import edu.princeton.cs.algs4.StdOut;

public class Test {
    public static void transposition(String [][] matrix){
        int m = matrix.length;
        int n = matrix[0].length;
        int max = (m > n) ? m : n;          //最大行列数
        String [][] tempMatrix = new String[max][max];

        for(int i = 0; i < matrix.length; i++){
            for(int j = 0; j < matrix[0].length; j++){
                tempMatrix[i][j] = matrix[i][j];
            }
        }


        String temp = new String();
        for(int i = 0; i < tempMatrix.length; i++){
            for(int j = 0; j < i; j++){
                temp = tempMatrix[i][j];
                tempMatrix[i][j] = tempMatrix[j][i];
                tempMatrix[j][i] = temp;
            }
        }

        StdOut.println("\nThe matrix of transposition:\n");

        for(int i = 0; i < n; i++){
            for(int j = 0; j < m; j++){
                StdOut.print(tempMatrix[i][j] +" ");
            }
            StdOut.println();
        }
    }

    public static void main(String[] args) {
        String [][] matrix = new String[4][6];
        for(int i = 0; i < matrix.length; i++){
            for(int j = 0; j < matrix[0].length; j++){
                matrix[i][j] = "" + i + j;
                StdOut.print(matrix[i][j] + " ");
            }
            StdOut.println();
        }

        transposition(matrix);
    }
}

运行结果如图:
这里写图片描述

jimmysun的方法

package com.jimmysun.algorithms.chapter1_1;

public class Ex13 {
    public static void printTransposedMatrix(int[][] matrix) {
        for (int i = 0; i < matrix[0].length; i++) {
            for (int j = 0; j < matrix.length; j++) {
                System.out.printf("%4d", matrix[j][i]);
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {
        int[][] a = { { 100, 200, 300 }, { 400, 500, 600 } };
        printTransposedMatrix(a);
    }
}

因为只要求输出转置矩阵,并不要求使用,所以在满足要求的情况下,jimmy的程序明显好太多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值