该算法是用于判定有向图的强连通性的,其具体思路就是:
求G图的反向图GR,然后求GR的逆后序,通过以这个逆后序为遍历数组,在图G中进行多次DFS,对一次未遍历到的数,按照逆后序数组的顺序再来进行新的DFS。倘若在G中进行的DFS能发现s->v,则可以说s和v强连通,将其连通分量改为同一个。
对于该算法的具体思想,依据算法4的介绍,我个人的理解如下:
为了证明s和v强连通,
首先,运用GR图得到一个逆后序,该逆后序可以写成如下形式:
···,s,···,v,···
从该形式我们可以推断出两种情况:
dfs(s)start->dfs(v)start->dfs(v)end->dfs(s)end(s,v属于同一连通分量且GR图中有s->v)
dfs(v)start->dfs(v)end->dfs(s)start->dfs(s)end (s,v属于两个连通分量)
接着,在G图中按照“···,s,···,v,···”的逆后序进行深度优先搜索,若存在s->v,则说明s,v在GR图中存在v->s的路径,则反过来说明GR图中的情况二是不可能出现的。所以“···,s,···,v,···”的逆后序从侧面说明了GR图中s->v。
总结:在G图和GR图中都存在s->v,则说明s->v强连通。
补充,在图G中使用GR的逆后序,我个人认为就是一种信息的传递,即告诉G图,GR图中s已经是在v前面的了(s->v),你只要能按照这个顺序再来一遍深度优先搜索并且搜索出s->v,就可以直接得到s和v强连通的结果。