归并排序

思想:

归并排序的核心是归并,即将两个有序数组合并成一个有序数组的操作。通过该方法加上分治的思想我们设计了归并排序,首先将一个数组划分为两个数组,由于这两个数组并未排好序,因此要继续划分,直至变成两个有序的数组(即长度为1),这时再逐级调用归并算法,不断将有序小数组归并成有序大数组。

自上而下&自下而上归并的区别
自上而下:采用了分治的思想,因此每次划分的数组大小都是差不多一样大的,但是这会造成最后有很多长度为3的小数组,要进行划分。
自下而上:由于我们知道分治的最终结果是长度为1的小数组,那么就直接以长度为1的小数组为单位进行两两归并。不过这会造成最后归并的时候两个有序大数组的长度不一样。

复杂度:

时间复杂度: O(nlgn) O ( n l g n )
因为单位数组(长度为一)的比较次数为lgn,这样的数组有n个,故需要0.5nlgn的比较次数。

空间复杂度: O(n) O ( n )

特点:

  • 占额外空间
  • 稳定排序
  • 线性对数排序时间
  • 自底向上适合于链表数组,因为不用新数组。

伪代码:

归并操作:谁小放谁。

merge(arr[], lo, mid, hi){
    temp[lo->hi]=copyOf(arr[lo->hi]);
    i=lo,j=mid+1;

    for(index=lo->hi){
        if(i>mid)   arr[index]=temp[j++];
        else if(j>hi)   arr[index]=temp[i++];
        else if(temp[i]<temp[j])   arr[index]=temp[i++];
        else  arr[index]=temp[j++];
    }
}

分治操作(自顶向下)

sort(arr[], lo, hi){
    if(lo>=hi) return;
    sort(arr[], lo, mid);
    sort(arr[], mid+1, hi);
    merge(arr[], lo, mid, hi);
}

自底向上

sort(arr[]){
    for(step=2->N,step=2*step){
        for(i=1->N-1,i=i+step){
            merge(arr[], i, i+step-1, min(i+step*2-1, N-1));
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值