今天这一章概述树的基本操作,边写边调试边更新!!!
首先定义树的节点结构:
#include<stdio.h>
#include <stdlib.h>
typedef char ElemType;
/*树的结点结构*/
typedef struct BiTNode
{
ElemType data;
struct BiTNode * lchild;
struct BiTNode * rchild;
}BiTNode,* BiTree;
前序遍历构造一颗树,当遇到输入‘#’时表示此结点的前驱为叶子结点:
void CreateTree(BiTree * T)
{
ElemType ch;
scanf("%c",&ch);
if (ch == '#')
{
*T = NULL;
}
else
{
*T = (BiTree)malloc(sizeof(BiTNode));
if(*T ==NULL)abort();
(*T)->data = ch;
CreateTree(&(*T)->lchild);
CreateTree(&(*T)->rchild);
}
}
三种简单的遍历方法,利用递归做非常简单,树把递归用到了极致:
/*前序遍历*/
void PreOrderTraverse(BiTree T)
{
if (!T)
{
return;
}
printf("%c ",T->data);
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);
}
/*中序遍历*/
void InOrderTraverse(BiTree T)
{
if (!T)
{
return;
}
InOrderTraverse(T->lchild);
printf("%c ",T->data);
InOrderTraverse(T->rchild);
}
/*中序遍历*/
void PostOrderTraverse(BiTree T)
{
if (!T)
{
return;
}
PostOrderTraverse(T->lchild);
PostOrderTraverse(T->rchild);
printf("%c ",T->data);
}
层序遍历需要利用之前学过的一个数据结构——队列帮助我们完成,所以我就简单的写了一个队列,只有Push和Pop两个方法:
/******************************简单的队列***********************************/
typedef BiTree QueElem;
typedef struct Queue
{
int rear;
int front;
QueElem * queue;
int quesize;
}Queue, * pQueue;
void Init(pQueue * que, int size)
{
*que = (pQueue)malloc(sizeof(Queue));
(*que)->queue=(QueElem*)malloc(sizeof(QueElem)*size);
(*que)->front = (*que)->rear = 0;
(*que)->quesize=size+1;
}
void Push(pQueue * que,QueElem e)
{
(*que)->rear=((*que)->rear+1)%(*que)->quesize;
(*que)->queue[(*que)->rear] = e;
}
void Pop(pQueue * que,QueElem * e)
{
(*que)->front=((*que)->front+1)%(*que)->quesize;
*e = (*que)->queue[(*que)->front];
}
/*******************************************************************************/
接下来就是层序遍历的实现,层序遍历比之前增加了点难度,不过很好的帮助我们复习了一下队列的用法,利用队列FIFO的特性,我们也将层序遍历实现了!
/*层序遍历*/
void LevelOrderTraverse(BiTree T)
{
if (!T)
{
return;
}
else
{
pQueue one;
Init(&one,20);
Push(&one,T);
while (one->rear != one->front)
{
BiTree temp =NULL;
Pop(&one,&temp);
printf("%c",temp->data);
if (temp->lchild)
{
Push(&one,temp->lchild);
}
if (temp->rchild)
{
Push(&one,temp->rchild);
}
}
}
}
下面这个方法是计算树的度,树的度说白了就是树的层数,当然是是从根结点开始遍历加上左子树和右子树中度比较大的数:
/*求树的度*/
int Depth(BiTree T)
{
if (!T)
{
return 0;
}
int left = Depth(T->lchild)+1;
int right = Depth(T->rchild)+1;
return left > right ? left : right;
}
有是一个简单的操作——销毁树,这里有个地方值得注意一下, 为什么参数要用BiTree * T ? 如果不加 * ,最后的*T=NULL 就要改为 T=NULL,这样能不能传递出去呢?
起到防止失控指针的作用了吗?读者可以自己进行调试看看!!!
/*销毁树*/
void DestoryTree(BiTree * T)
{
if(*T == NULL)
{
return;
}
if ((*T)->lchild)
{
DestoryTree(&(*T)->lchild);
}
if((*T)->rchild)
{
DestoryTree(&(*T)->rchild);
}
free(*T);
*T=NULL; /*注意*/
}
这个方法是获取数据域等于e的结点的双亲结点,挺纠结的一个方法,大半夜了脑袋有点不好使,不过经得起测试,结果正确。
为什么 要用参数返回结果呢,因为有大神告诉我,返回值是用来返回调试错误的,而且返回值只能返回一个结果,而参数我们可以返回很多结果,
这也正是我们学习C语言指针的精髓所在!
/*获取e的前驱*/
void getParent(BiTree T, ElemType e,BiTree * RES)
{
if ( * RES != NULL || !T)
{
return;
}
if (T->lchild && * RES == NULL)
{
if (T->lchild->data == e)
{
*RES = T;
return;
}
getParent(T->lchild, e,RES);
}
if (T->rchild && * RES == NULL)
{
if (T->rchild->data == e)
{
*RES = T;
return;
}
getParent(T->rchild, e,RES);
}
}