【LetMeFly】2244.完成所有任务需要的最少轮数:贪心(计数)
力扣题目链接:https://leetcode.cn/problems/minimum-rounds-to-complete-all-tasks/
给你一个下标从 0 开始的整数数组 tasks
,其中 tasks[i]
表示任务的难度级别。在每一轮中,你可以完成 2 个或者 3 个 相同难度级别 的任务。
返回完成所有任务需要的 最少 轮数,如果无法完成所有任务,返回 -1
。
示例 1:
输入:tasks = [2,2,3,3,2,4,4,4,4,4] 输出:4 解释:要想完成所有任务,一个可能的计划是: - 第一轮,完成难度级别为 2 的 3 个任务。 - 第二轮,完成难度级别为 3 的 2 个任务。 - 第三轮,完成难度级别为 4 的 3 个任务。 - 第四轮,完成难度级别为 4 的 2 个任务。 可以证明,无法在少于 4 轮的情况下完成所有任务,所以答案为 4 。
示例 2:
输入:tasks = [2,3,3] 输出:-1 解释:难度级别为 2 的任务只有 1 个,但每一轮执行中,只能选择完成 2 个或者 3 个相同难度级别的任务。因此,无法完成所有任务,答案为 -1 。
提示:
1 <= tasks.length <= 105
1 <= tasks[i] <= 109
方法一:计数(哈希表)
可以使用一个哈希表统计每个“难度”出现的次数。
对于某个任务:
- 假设其一共出现了 1 1 1次,则无法完成,直接返回 − 1 -1 −1。
- 否则,假设出现了 n n n次,则需要 ⌈ n 3 ⌉ \lceil\frac{n}{3}\rceil ⌈3n⌉轮次。
为什么 n ≥ 2 n\geq 2 n≥2时需要 ⌈ n 3 ⌉ \lceil\frac{n}{3}\rceil ⌈3n⌉轮?
因为贪心。每次能完成 2 2 2个或 3 3 3个,那当然是尽量完成 3 3 3个。
- 假设 n m o d 3 = 0 n\mod 3=0 nmod3=0,则需要 n 3 \frac{n}{3} 3n轮
- 假设 n m o d 3 = 1 n\mod 3=1 nmod3=1,则需要 ⌊ n 3 ⌋ − 1 \lfloor\frac{n}{3}\rfloor-1 ⌊3n⌋−1轮的 3 3 3任务和 2 2 2轮的 2 2 2任务
- 假设 n m o d 3 = 2 n\mod 3=2 nmod3=2,则需要 ⌊ n 3 ⌋ \lfloor\frac{n}{3}\rfloor ⌊3n⌋轮的 3 3 3任务和 1 1 1轮的 2 2 2任务
时空复杂度
- 时间复杂度 O ( n ) O(n) O(n)
- 空间复杂度 O ( n ) O(n) O(n),空间复杂度的主要来自哈希表
AC代码
C++
class Solution {
public:
int minimumRounds(vector<int>& tasks) {
unordered_map<int, int> ma;
for (int t : tasks) {
ma[t]++;
}
int ans = 0;
for (auto& [val, times] : ma) {
if (times == 1) {
return -1;
}
ans += (times + 2) / 3;
}
return ans;
}
};
Python
# from typing import List
# from collections import defaultdict
class Solution:
def minimumRounds(self, tasks: List[int]) -> int:
ma = defaultdict(int)
for t in tasks:
ma[t] += 1
ans = 0
for val, times in ma.items():
if times == 1:
return -1
ans += (times + 2) // 3
return ans
方法二:排序
和方法一思路相同,不同的是方法一中使用哈希表计数,方法二中使用排序。
将任务数组排个序,这样相同的任务就到一块了。
一次遍历即可得到“相同任务出现了几次”。
时空复杂度
- 时间复杂度 O ( n log n ) O(n\log n) O(nlogn)
- 空间复杂度 O ( log n ) O(\log n) O(logn)
相比于方法一,排序增加了时间复杂度,但降低了哈希表所需的空间复杂度。
End
同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/138849002