LeetCode 2244.完成所有任务需要的最少轮数:贪心(计数)

【LetMeFly】2244.完成所有任务需要的最少轮数:贪心(计数)

力扣题目链接:https://leetcode.cn/problems/minimum-rounds-to-complete-all-tasks/

给你一个下标从 0 开始的整数数组 tasks ,其中 tasks[i] 表示任务的难度级别。在每一轮中,你可以完成 2 个或者 3 个 相同难度级别 的任务。

返回完成所有任务需要的 最少 轮数,如果无法完成所有任务,返回 -1

 

示例 1:

输入:tasks = [2,2,3,3,2,4,4,4,4,4]
输出:4
解释:要想完成所有任务,一个可能的计划是:
- 第一轮,完成难度级别为 2 的 3 个任务。 
- 第二轮,完成难度级别为 3 的 2 个任务。 
- 第三轮,完成难度级别为 4 的 3 个任务。 
- 第四轮,完成难度级别为 4 的 2 个任务。 
可以证明,无法在少于 4 轮的情况下完成所有任务,所以答案为 4 。

示例 2:

输入:tasks = [2,3,3]
输出:-1
解释:难度级别为 2 的任务只有 1 个,但每一轮执行中,只能选择完成 2 个或者 3 个相同难度级别的任务。因此,无法完成所有任务,答案为 -1 。

 

提示:

  • 1 <= tasks.length <= 105
  • 1 <= tasks[i] <= 109

方法一:计数(哈希表)

可以使用一个哈希表统计每个“难度”出现的次数。

对于某个任务:

  • 假设其一共出现了 1 1 1次,则无法完成,直接返回 − 1 -1 1
  • 否则,假设出现了 n n n次,则需要 ⌈ n 3 ⌉ \lceil\frac{n}{3}\rceil 3n轮次。

为什么 n ≥ 2 n\geq 2 n2时需要 ⌈ n 3 ⌉ \lceil\frac{n}{3}\rceil 3n轮?

因为贪心。每次能完成 2 2 2个或 3 3 3个,那当然是尽量完成 3 3 3个。

  • 假设 n m o d    3 = 0 n\mod 3=0 nmod3=0,则需要 n 3 \frac{n}{3} 3n
  • 假设 n m o d    3 = 1 n\mod 3=1 nmod3=1,则需要 ⌊ n 3 ⌋ − 1 \lfloor\frac{n}{3}\rfloor-1 3n1轮的 3 3 3任务和 2 2 2轮的 2 2 2任务
  • 假设 n m o d    3 = 2 n\mod 3=2 nmod3=2,则需要 ⌊ n 3 ⌋ \lfloor\frac{n}{3}\rfloor 3n轮的 3 3 3任务和 1 1 1轮的 2 2 2任务

时空复杂度

  • 时间复杂度 O ( n ) O(n) O(n)
  • 空间复杂度 O ( n ) O(n) O(n),空间复杂度的主要来自哈希表

AC代码

C++
class Solution {
public:
    int minimumRounds(vector<int>& tasks) {
        unordered_map<int, int> ma;
        for (int t : tasks) {
            ma[t]++;
        }
        int ans = 0;
        for (auto& [val, times] : ma) {
            if (times == 1) {
                return -1;
            }
            ans += (times + 2) / 3;
        }
        return ans;
    }
};
Python
# from typing import List
# from collections import defaultdict

class Solution:
    def minimumRounds(self, tasks: List[int]) -> int:
        ma = defaultdict(int)
        for t in tasks:
            ma[t] += 1
        ans = 0
        for val, times in ma.items():
            if times == 1:
                return -1
            ans += (times + 2) // 3
        return ans

方法二:排序

和方法一思路相同,不同的是方法一中使用哈希表计数,方法二中使用排序。

将任务数组排个序,这样相同的任务就到一块了。

一次遍历即可得到“相同任务出现了几次”。

时空复杂度

  • 时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)
  • 空间复杂度 O ( log ⁡ n ) O(\log n) O(logn)

相比于方法一,排序增加了时间复杂度,但降低了哈希表所需的空间复杂度。

End

同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/138849002

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tisfy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值