完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数:它所有的真因子(即除了自身以外的约数)的和,恰好等于它本身,完全数不可能是楔形数、平方数、佩尔数或斐波那契数。
例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,
1+2+3=6,恰好等于本身。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,
1+2+4+7+14=28,也恰好等于本身。后面的数是496、8128。
判断算法👇👇
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
bool prime(long long a){//判断质数,质数直接排除
int mul=0;//此处应该是sum,懒得改了
for(int i=1;i<=a;i++){
if(a%i==0){//是因数的话数量+1
mul++;
}
}
if(mul==2){//因数只有1和自己
return true;
}
else{
return false;
}
}
int main()
{
int cnt=0;
int n;
cin>>n;
for(int i=2;i<=n;i++){
// cout<<i<<" ";//测试程序,判断i是否正常
if(prime(i)){
continue;//质数直接排除,这样更快
}
for(int j=1;j<i;j++){
if(i%j==0){//把除了自己的所有因数相加
cnt+=j;
// cout<<"j:"<<j<<" "; //测试程序,判断因数是否正确
}
}
if(i==cnt){//是的话输出
cout<<cnt<<endl;
cnt=0;//清空
}
cnt=0;//清空
}
return 0;
}