n以内的完美数(代码原创)

完全数(Perfect number),又称完美数完备数,是一些特殊的自然数:它所有的真因子(即除了自身以外的约数)的和,恰好等于它本身,完全数不可能是楔形数平方数佩尔数或斐波那契数

古氏积木演示完全数6

例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,

{\displaystyle {​{​{1}+{2}}+{3}}=6}

1+2+3=6,恰好等于本身。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,

{\displaystyle {​{​{​{​{1}+{2}}+{4}}+{7}}+{14}}=28}

1+2+4+7+14=28,也恰好等于本身。后面的数是4968128

判断算法👇👇

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
bool prime(long long a){//判断质数,质数直接排除
	int mul=0;//此处应该是sum,懒得改了
	for(int i=1;i<=a;i++){
		if(a%i==0){//是因数的话数量+1
			mul++;
		}
	}
	if(mul==2){//因数只有1和自己
		return true;
	}
	else{
		return false;
	}
}
int main()
{
	int cnt=0;
	int n;
	cin>>n;
	for(int i=2;i<=n;i++){
//		cout<<i<<" ";//测试程序,判断i是否正常
		if(prime(i)){
			continue;//质数直接排除,这样更快
		}
		for(int j=1;j<i;j++){
			if(i%j==0){//把除了自己的所有因数相加
				cnt+=j;
//				cout<<"j:"<<j<<" "; //测试程序,判断因数是否正确
			}
		} 
		if(i==cnt){//是的话输出
		cout<<cnt<<endl;
		cnt=0;//清空
		}
		cnt=0;//清空
	}
	
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值