题目描述
有 𝑛 个人在一个水龙头前排队接水,假如每个人接水的时间为 𝑇𝑖,请编程找出这 𝑛 个人排队的一种顺序,使得 𝑛个人的平均等待时间最小。
输入格式
第一行为一个整数 𝑛。
第二行 𝑛 个整数,第 𝑖 个整数 𝑇𝑖表示第 𝑖 个人的接水时间 𝑇𝑖。
输出格式
输出文件有两行,第一行为一种平均时间最短的排队顺序;第二行为这种排列方案下的平均等待时间(输出结果精确到小数点后两位)。
输入输出样例
输入 #1
10 56 12 1 99 1000 234 33 55 99 812
输出 #1
3 2 7 8 1 4 9 6 10 5 291.90
说明/提示
1≤𝑛≤1000,1≤𝑡𝑖≤106,不保证 𝑡𝑖 不重复。
首先,想要排队时间最短,就要让时间最短的人在前面,减少等候时间,比如
3个人的排队时间分别是3,1,2,那肯定1,2,3最快,总共等了1+2秒,平均每人等1.5秒(总共等候时间/(人数-1)),最后一个人后面没有人了,它想接多久接多久,哪怕接1145141919810秒都没事,剩下的自己去理解吧(sort升序等候时间最短)
#include<bits/stdc++.h>
using namespace std;
struct p{
int x,t;//x是编号(人的),t是time
bool operator<(const p &w )const
{
return t<w.t;//按时间排序
}
}a[1000];
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
a[i].x=i+1;//直接下标从0开始+1存为编号,下标:0,1,2,3,4,5 编号:1,2,3,4,5,6
cin>>a[i].t;//time输入
}
long long sum=0;
sort(a,a+n);//核心!!!
for(int i=0;i<n;i++){
cout<<a[i].x<<' ';//先输出循序
//sum+=a[i].t;//废的,不要了,//验证
}
for(int i=0;i<n-1;i++){//前面说的人数-1
sum+=a[i].t*(n-i-1);//核心*2,总人数-第几个-1,如下标0,1,2,3,4 人=5-0-1(下标4),以此类推
}
//cout<<sum<<endl;//验证
cout<<endl;
cout<<fixed<<setprecision(2)<<sum*1.0/n;
}