7-18 | 二分法求多项式单根

题目:

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。

二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
  • 如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
  • 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
  • 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
  • 如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。

本题目要求编写程序,计算给定3阶多项式f(x)=a3​x3+a2​x2+a1​x+a0​在给定区间[a,b]内的根。


输入格式:

输入在第1行中顺序给出多项式的4个系数a3​、a2​、a1​、a0​,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。


输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。


题目解答:


#include<stdio.h>
//计算多项式
float a3,a2,a1,a0;
float compute(float x){
    return a0+a1*x+a2*x*x+a3*x*x*x;
}
//关于阈值的判断,因为原题要求精确到2位小数,猜测阈值为0.01;
int main(){
    
    float a,b;
    scanf("%f %f %f %f\n",&a3,&a2,&a1,&a0);
    scanf("%f %f",&a,&b);
    //先判断端点是否为根
    if(compute(a)==0.0){
        printf("%.2f",a);
    }else if(compute(b)==0.0){
        printf("%.2f",b);
    }else{
        //二分查找,直到找到根或者小于阈值退出循环
        while(a-b<-0.01){
                float mid=(b-a)/2.0+a;
                if(compute(mid)==0.0){
                    printf("%.2f",mid);
                    break;
                }else if(compute(mid)*compute(a)<0.0){
                    b=mid;
                }else {
                    a=mid;
                }
         }
    }
   //小于阈值,打印此时a和b的平均数
    if(a-b>-0.01){
        printf("%.2f",(b-a)/2.0+a);
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值