1、数的分解
给定一个正整数n,如果能够分解为m(m > 1)个连续正整数之和,
请输出所有分解中,m最小的分解。
如果给定整数无法分解为连续正整数,则输出字符串"N"。
输入描述:
输入数据为一整数,范围为(1, 2^30]
输出描述:
比如输入为:
21
输出:
21=10+11
补充说明:
21可以分解的连续正整数组合的形式有多种
21=1+2+3+4+5+6
21=6+7+8
21=10+11
输出,21=10+11,是最短的分解序列。
思路:
k + (k + 1) + (k + 2) +…+(k + m - 1) = n
m * [k + (k + m - 1)] / 2 = n
mk + m * (m - 1) / 2 = n
如果存在k作为起始点,m个连续的数字相加等于n,
即:
mk = n - [m * (m -1) / 2]
则:m 能被 n - [m * (m -1) / 2] 整除
且k = { n - [m * (m -1) / 2] } / m
code
#include <iostream>
#include <vector>
using namespace std;
void Find(int & n) {
bool flag = false;
for (int m = 2; m *(m - 1) < 2 * n; m++) {
if ((n - m * (m -1) / 2) % m == 0) {
int k = (n - m * (m -1) / 2) / m;
if (k > 0) {
cout << n << "=";
for(int i = 0; i < m - 1; i++) {
cout << k + i << "+";
}
cout << k + m - 1 << endl;
flag = true;
break;
}
}
}
if (!flag)
cout << "N" << endl;
}
int main(){
int n;
while(cin>>n) {
Find(n);
}
return 0;
}
2、字符串判断子串
描述
输入两个字符串 S 和 L,都只包含英文小写字母。S 长度\u003C=100,L 长度\u003C=500,000。
判定 S 是否是 L 的有效子串。
判定规则:
S 中的每个字符在 L 中都能找到(可以不连续),
且 S 在L中字符的前后顺序与 S 中顺序要保持一致。
(例如,S=”ace”是 L=”abcde”的一个子序列且有效字符是 a、c、e,
而”aec”不是有效子序列,且有效字符只有 a、e)
输入描述
输入两个字符串 S 和 L,都只包含英文小写字母。
S 长度\u003C=100,L 长度\u003C=500,000。
先输入 S,再输入 L,每个字符串占一行。
输出描述
S 串最后一个有效字符在 L 中的位置。(首位从 0 开始计算,无有效字符返回-1)
示例一
输入输出示例仅供调试
输入
ace
abcde
输出4
思路
双指针直接比较
code
#include <iostream>
#include <vector>
using namespace std;
int Find(string& s, string& l) {
int s_len = s.length();
int l_len = l.length();
int i = 0, j = 0;
int res = 0;
while (j < l_len) {
if (s[i] == l[j]){
i++;
res = i;
if (i == s_len){
return j;
}
}
j++;
}
return -1;
}
int main(){
string s,l;
while(cin>>s>>l) {
int res = Find(s, l);
cout << res << endl;
}
return 0;
}