排序算法之插入排序和希尔排序
一、插入排序原理
插入排序的基本思想:
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列
这个过程就像玩扑克牌时的摸牌,每次摸牌时都将牌放到正确的位置,我们放到编程中可以转换一下
例如直接插入排序的单趟排序是将当前数值插入到有序序列的指定位置,我们通过当前位置开始从后往前遍历数组,将数值向前移动,直到移动到该数据的指定位置,就完成单趟排序
逆序有序的数组排序时,时间复杂度为O(n^2),此时效率最低
顺序有序的数组排序时,时间复杂度为O ( n ),此时效率最高
直接插入排序的特性总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),它是一种稳定的排序算法
- 稳定性:稳定
二、希尔排序
人们发现,当被排序的对象越接近有序时,插入排序的效率越高,那我们是否有办法将数组变成接近有序后再用插入排序,此时希尔大佬就发现了这个排序算法,并命名为希尔排序
希尔排序法又称缩小增量法,其基本思想是:先选定一个整数,把待排序文件中所有记录分成若干个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后取重复上述分组和排序的工作,当到达组距为1时,这时每个元素都是单独的一个组,也就变成了插入排序。
希尔排序就是将数组变成接近有序后再用插入排序,以达到优化插入排序的效果
三、希尔排序的特性
希尔排序的特性总结:
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比
- 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此很多书中给出的希尔排序的时间复杂度都不固定
- 稳定性:不稳定
四、实现代码
// 插入排序
void InsertSort(int* a, int n)
{
int i = 0;
for (i = 0; i < n - 1; i++)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
// 希尔排序
void ShellSort(int* a, int n)
{
//1、gap > 1 预排序
//2、gap == 1 直接插入排序
int i = 0;
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (i = 0; i < n - gap; i++)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}