POJ1061 || 洛谷P1516 青蛙的约会

1 篇文章 0 订阅
1 篇文章 0 订阅

题目链接

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

题目大意

依次读入5个整数x,y,m,n,L
求关于 k k k的一次同余方程 x + k m = y + k n ( m o d L ) x+km=y+kn(mod L) x+km=y+kn(modL) 的最小正整数解
无解时输出Impossible
保证 x ̸ = y , 0 &lt; x , y , m , n ≤ 2 × 1 0 9   且   0 &lt; L ≤ 2.1 × 1 0 9 x \not= y , 0 &lt; x, y, m, n \leq 2\times10^{9} \ 且 \ 0 &lt; L \leq 2.1\times10^{9} x̸=y0<x,y,m,n2×109  0<L2.1×109

解题思路

注意到 :
x + k m = y + k n   ( m o d L ) \qquad \quad x + km = y + kn \ (mod L) x+km=y+kn (modL)
&ThickSpace; ⟺ &ThickSpace; k ( m − n ) = y − x   ( m o d L ) \iff k(m - n) = y - x \ (mod L) k(mn)=yx (modL)
&ThickSpace; ⟺ &ThickSpace; k ( m − n ) + t L = y − x \iff k(m - n) + tL = y - x k(mn)+tL=yx,其中 t ∈ Z t \in Z tZ
由此可见,这是一个关于整数 k k k t t t的一个一次不定方程
其有整数解的充要条件时 g c d ( m − n , L ) ∣ ( y − x ) gcd(m-n,L) | (y-x) gcd(mn,L)(yx)
因此这道题的做法就是 e x g c d exgcd exgcd(扩展欧几里得算法)

注意:
  1. 用exgcd得到的 k k k应该是不定方程 k ( m − n ) + t L = g c d ( m − n , L ) k(m - n) + tL = gcd(m-n,L) k(mn)+tL=gcd(mn,L)的解,因此应当分情况讨论:
    1. 如果 g c d ( m − n , L )    ∣ ̸ ( y − x ) gcd(m-n,L) \ \ |\not (y-x) gcd(mn,L)  ̸(yx),则无解,输出Impossible
    2. 否则 k k k应当乘上 y − x g c d ( m − n , L ) \frac{y-x}{gcd(m-n,L)} gcd(mn,L)yx
  2. 得到 k k k应该是对 L g c d ( m − n , L ) \frac{L}{gcd(m-n,L)} gcd(mn,L)L取模意义下的解,所以应该再对 L g c d ( m − n , L ) \frac{L}{gcd(m-n,L)} gcd(mn,L)L取模;
  3. 尽管输入在int范围内,但是为了避免乘爆,请使用long long。

代码Code

#include<cstdio>
using namespace std;
//x+km==y+kn(mod L) <==> k(m-n)==y-x(mod L) <==> k(m-n) + tL == y-x

long long x, y, m, n, L;

void exgcd(long long a, long long b, long long &_gcd, long long &x, long long &y){
	if(a % b == 0){
		_gcd = b;
		x = 0; y = 1;
		return;
	}
	exgcd(b, a % b, _gcd, x, y);
	long long tmp = x;
	x = y;
	y = tmp - y * (a / b);
}

int main(){
	scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &L);
	long long a, b, c, k, t, g;
	b = L;
	a = m - n;
	if(a < 0) a = -a, c = x - y;
	else c = y - x;
	exgcd(a, b, g, k, t);
//	printf("%lld %lld %lld %lld %lld", a, b, g, k, t);
	if(c % g != 0){
		printf("Impossible\n");
	}else{
		printf("%lld\n", (k * (c / g) % (b / g) + (b / g)) % (b / g));
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值