public class Sort {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] array = { 2, 3, 5, 76, 3, 6, 7, 5, 4, 4, 6 };
quickSortArray(array);
}
/**
* 冒泡排序
* 效率 O(n²),适用于排序小列表
*/
private static void bubbleSortArray(int[] array) {
int length = array.length;
for (int i = 1; i < length; i++) {
for (int j = 0; j < length - i; j++) {
if (array[j] > array[j + 1]) {
int temp = array[j + 1];
array[j + 1] = array[j];
array[j] = temp;
}
}
}
println(array);
}
/**
* 选择排序
* 效率 O(n²),适用于排序小列表
*/
private static void selectSortArray(int[] array) {
int length = array.length;
int min_index;
for (int i = 0; i < length - 1; i++) {
min_index = i;
for (int j = i + 1; j < length; j++) {
if (array[j] < array[min_index]) {
min_index = j;
}
}
if (min_index != i) {
int temp = array[min_index];
array[min_index] = array[i];
array[i] = temp;
}
}
println(array);
}
/**
* 插入排序
* 最佳效率O(n);最糟效率O(n²)与冒泡、选择相同。
* 适用于排序小列表 若列表基本有序,则插入排序比冒泡、选择更有效率。
*/
private static void insertSortArray(int[] array) {
int length = array.length;
for (int i = 1; i < length; i++) {
int temp = array[i];
int j = i - 1;
while (j >= 0 && array[j] > temp) {
array[j + 1] = array[j];
j--;
}
array[j + 1] = temp;
}
println(array);
}
/**
* 希尔排序,也称缩小增量排序 适用于排序小列表 效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。
* 建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
* 改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。
*/
private static void ShellSortArray(int[] array) {
int length = array.length;
int d = length;
while (true) {
d = d / 2;// 初次取序列的一半为增量,以后每次减半,直到增量为1
for (int x = 0; x < d; x++) {
for (int i = x + d; i < length; i += d) {
int temp = array[i];
int j;
for (j = i - d; j >= 0 && array[j] > temp; j -= d) {
array[j + d] = array[j];
}
array[j + d] = temp;
}
}
if (d == 1) {
break;
}
}
println(array);
}
//------------------------归并排序 start----------------------------------
/**
* 归并排序
* 适用于排序大列表,基于分治法
* 归并排序算法稳定,数组需要O(n)的额外空间,链表需要O(log(n))的额外空间,时间复杂度为O(nlog(n))
* 算法不是自适应的,不需要对数据的随机读取
*/
private static void mergeSortArray(int[] array){
mergeSortArray(array,0,array.length-1);
println(array);
}
private static void mergeSortArray(int[] data , int left , int right){
if(left >= right){//每个子列表中剩下一个元素时停止
return;
}
int center = (left+right)/2;
mergeSortArray(data,left , center);
mergeSortArray(data, center+1, right);
merge(data,left,center,right);
}
/**
* 归并两个有序表
*/
private static void merge(int[] data , int left,int center,int right){
int[] tempArray = new int[data.length];
int mid = center+1;
int k=left;
int tmp = left;
while(left <= center && mid <= right){
if(data[left]<data[mid]){
tempArray[k++] = data[left++];
}else{
tempArray[k++] = data[mid++];
}
}
while(left<=center){
tempArray[k++] = data[left++];
}
while(mid<=right){
tempArray[k++] = data[mid++];
}
while (tmp <= right) {
data[tmp] = tempArray[tmp++];
}
}
//------------------------归并排序 end----------------------------------
//------------------------快速排序 start----------------------------------
/**
* 快速排序
* 平均效率O(nlogn),适用于排序大列表。基于分治法。
* 此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。
* 若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
* 通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,
* 则分别对这两部分继续进行排序,直到整个序列有序。
*/
private static void quickSortArray(int[] array){
quickSort(array, 0, array.length-1);
println(array);
}
private static void quickSort(int[] array,int low,int high){
if(low >= high){
return;
}
int middle = getMiddle(array, low, high);
quickSort(array, low, middle-1);
quickSort(array, middle +1, high);
}
private static int getMiddle(int[] array,int low, int high){
int tmp = array[low];
while(low < high){
while(low < high && array[high]>=tmp){
high--;
}
array[low] = array[high];
while(low < high && array[low] <= tmp){
low++;
}
array[high] = array[low];
}
array[low] = tmp;
return low;
}
//------------------------快速排序 end----------------------------------
private static void println(int[] array) {
StringBuffer sb = new StringBuffer();
for (int i = 0; i < array.length; i++) {
sb.append(array[i] + " ");
}
System.out.println(sb.toString());
}
}
sort排序算法集合
最新推荐文章于 2024-03-09 22:38:12 发布