静态查找表:顺序查找、折半查找、分块查找

引言:


       除去各种线性和非线性的数据结构外,还有一种在实际应用中大量使用的数据结构——查找表。查找表是由同一类型的数据元素构成的集合。

       对查找表经常进行的操作有:1、查找某个"特定的"数据元素是否在查找表中;2、检索某个"特定的"数据元素的各种属性;3、在查找表中插入一个数据元素;4、从查找表中删去某个数据元素。对查找表只作前两种统称为"查找"的操作,则称此类查找表为静态查找表。若在查找过程中同时插入查找表中不存在的数据元素,或者从查找表中删除已存在的某个数据元素,则称此类表为动态查找表。


基础知识:


关键字类型和数据元素类型统一说明如下:  
典型的关键字类型说明可以是:  
typedef float KeyType;      //实型  
typedef int    KeyType;            //整型  
typedef char KeyType;            //字符串型  
数据元素类型定义为:  
typedef struct {  
         KeyType   key;               //关键字域  
         ........                               //其他域  
}SElmType;  
对两个关键字的比较约定如下的宏定义:  
//对数值型关键字  
#define EQ(a, b)    ((a) == (b))  
#define LT(a, b)     ((a) < (b))  
#define LQ(a, b)     ((a) > (b))  
 //对字符串型关键字  
#define EQ(a, b)    (!strcmp((a), (b)))  
#define LT(a, b)     (strcmp((a), (b)) < 0)  
#define LQ(a, b)     (strcmp((a), (b)) > 0) 

具体分析:


1、顺序查找。

       顺序查找:从表中最后一个记录开始,逐个进行记录的关键字和给定值的比较,若某个记录的关键字和给定值比较相等,则查找成功,找到所查记录;反之,若直至第一个记录,其关键字和给定值比较都不相等,则表明表中没有所查记录,查找不成功。

       性能分析:我们知道当讨论一个程序的性能时一般从3个角度:时间复杂度、空间复杂度、和算法的其他性能。由于在查找过程中,通常只是需要一个固定大小的辅助空间来做比较,所以空间复杂度是一定的。而时间复杂度却是可变的:其关键字和给定值进行过比较的记录个数的平均值。

      适用范围顺序查找一般适用于查找数据比较少的情况下。

      优点:

      1、算法实现简单且适应面广

      2、对表的结构无任何要求,无论记录是否按关键字有序排列。

      3、即适用于顺序表又适用于单链表。

     缺点:

     1、平均查找长度较大,特别是当n很大时,查找效率较低。

     2、速度慢,平均查找长度为 (n + 1) / 2,时间复杂度为 O(n) 

typedef int ElementType;  
#define EQ(a, b)  ((a) == (b))  
  
int sequential(int Array[], ElementType key, int n)  
{  
    int index;  
    for(index = 0; index < n; index++){  
        if(EQ(Array[index], key))     
            return index + 1;  
    }  
    return -1;  
}  

2、折半查找。

       折半查找:折半查找又称二分查找,先确定待查记录所在的范围(区间),然后逐步缩小范围直到找到或找不到该记录为止。

       适用范围:对于规模较大的有序表查找,效率较高。适合很少改动但经常查找的表。

        优点:

       1、折半查找的效率比顺序查找要高。

       2、折半查找的时间复杂度为log2(n)

       3、折半查找的平均查找长度为log2(n+1) - 1

       缺点:

       1、折半查找只适用于有序表

       2、折半查找限于顺序存储结构,对线性链表无法有效地进行折半查找     

       

        关键字key与表中某一元素array[i]比较,有3中情况:

        1. key == array[i], 查找成功

        2.key > array[i], 待查找元素可能的范围是array[i]之前

        3.key < array[i], 待查找元素可能的范围是array[i]之后

typedef int ElementType;  
#define EQ(a, b)  ((a) == (b))  
#define LT(a, b)  ((a) < (b))  
#define LQ(a, b)  ((a) <= (b))  
  
int Search_Bin(ElementType Array[], int num, int length)  
{  
    int index_low, index_mid, index_high;  
    index_low = 1;  
    index_high = length;  
    while(index_low <= index_high){  
        index_mid = (index_low + index_high) / 2;     
        if(EQ(num, Array[index_mid]))  
            return index_mid + 1;  
        else if (LT(num, Array[index_mid]))  
            index_high = index_mid - 1;  
        else  
            index_low = index_mid + 1;  
    }  
    return -1;  
}  

3、分块查找。

       分块查找:分块查找又称索引顺序查找,它是顺序查找的一种改进方法。将n个数据元素“按块有序”划分为m块(m<=n)。每一块中的数据元素不必有序,但块与块之间必须“按块有序”,即第1快中的任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都小于第3块中的任一元素,……    

        操作步骤:

       1、先选取各快中的最大关键字构成一个索引表

       2、查找分两部分:先对索引表进行二分查找或顺序查找,以确定待查记录在哪一块中;然后在已确定的快中用顺序法进行查找。

      优点在表中插入或删除一个记录时,只要找到该记录所在块,就在该块中进行插入或删除运算(因快内无序,所以不需要大量移动记录)。

      缺点:增加了一个辅助数组的存储空间和将初始表分块排序的运算。

      性能:介于顺序查找和二分查找之间。

#define MAX 3  
#define MAXSIZE 18  
  
  
typedef int ElemType;  
typedef struct IndexItem{  
    ElemType index;  
    int start;  
    int length;  
}IndexItem;  
IndexItem indexlist[MAX];  
  
ElemType MainList[MAXSIZE] = {22, 12, 13, 8, 9, 20, 33, 42, 44, 38, 24, 48, 60, 58, 74, 49, 86, 53};  
  
int sequential(IndexItem indexlist[], ElemType key)  
{  
    int index;  
    if(indexlist[0].index >= key) return 1;  
    for(index = 1; index <= MAX; index++){  
        if((indexlist[index-1].index < key)&&(indexlist[index].index >= key))   
                return index+1;  
    }  
    return 0;  
}  
  
int mainsequential(ElemType MainList[], int index, ElemType key)  
{  
    int i, num=0;  
    for(i = 0; i < index-1; i++){  
        num += indexlist[i].length;   
    }  
    for(i = num; i < num+indexlist[index-1].length; i++){  
        if(MainList[i] == key) return i+1;    
    }  
    return -1;  
}  

除上面介绍的3种查找方法,还有针对有序表的斐波那契查找和插值查找以及静态树表的查找。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值