最长公共子串和最长公共子序列

最长公共子串和最长公共子序列是两个不一样的问题,前者要求连续出现在两个字符串中,后者只要顺序一致即可。两者的解决方法类似,都是使用动态规划(DP)。

最长公共子序列:

状态转移方程

                      

package LeetCode;

public class LongestCommonSubsequence {

    public static int findLongestCommonSubsequence(String str1, String str2) {

        int m = str1.length(), n = str2.length();

        int[][] dp = new int[m + 1][n + 1];

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (str1.charAt(i) == str2.charAt(j))
                    dp[i + 1][j + 1] = dp[i][j] + 1;
                else
                    dp[i + 1][j + 1] = Math.max(dp[i + 1][j], dp[i][j + 1]);
            }
        }
        return dp[m][n];
    }

    public static String findLongestCommonSubsequence1(String str1, String str2) {

        int n = str1.length(), m = str2.length();
        String[][] dp = new String[n + 1][m + 1];
        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= m; j++)
                dp[i][j] = "";
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (str1.charAt(i) == str2.charAt(j))
                    dp[i + 1][j + 1] = dp[i][j] + str1.charAt(i);
                else {
                    if (dp[i + 1][j].length() > dp[i][j + 1].length())
                        dp[i + 1][j + 1] = dp[i + 1][j];
                    else
                        dp[i + 1][j + 1] = dp[i][j + 1];
                }
            }
        }
        return dp[m][n];
    }

    //计算Levenshtein Distance
    public static int calLevenshteinDistance(String str1, String str2, int i, int j) {

        if (i == 0)
            return j;
        if (j == 0)
            return i;
        int cost = str1.charAt(i - 1) == str2.charAt(j - 1) ? 0 : 1;
        return Math.min(Math.min(calLevenshteinDistance(str1, str2, i - 1, j) + 1, calLevenshteinDistance(str1, str2, i, j - 1) + 1),
                calLevenshteinDistance(str1, str2, i - 1, j - 1) + cost);
    }

    public static int LevenshteinDistance1(String s1, String s2) {

        int substitutionCost;
        int m = s1.length(), n = s2.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 0; i <= m; i++)
            dp[i][0] = i;
        for (int i = 0; i <= n; i++)
            dp[0][i] = i;
        for (int j = 1; j <= n; j++) {
            for (int i = 1; i <= m; i++) {
                if (s1.charAt(i - 1) == s2.charAt(j - 1))
                    substitutionCost = 0;
                else
                    substitutionCost = 1;
                dp[i][j] = Math.min(Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + substitutionCost);
            }
        }
        return dp[m][n];
    }


    public static void main(String[] args) {

        String str1 = "abcde";
        String str2 = "abgde";
        System.out.println(findLongestCommonSubsequence(str1, str2));
        System.out.println(findLongestCommonSubsequence1(str1, str2));
        str1 = "kitten";
        str2 = "sitting";
        System.out.println(calLevenshteinDistance(str1, str2, str1.length(), str2.length()));
        System.out.println(LevenshteinDistance1(str1, str2));
    }
}

最长公共子串:

状态转移方程:

                       

package LeetCode;

import java.util.Arrays;

public class LongestCommonSubstring {

    public static int findLongestCommonSubstring(String str1,String str2){

        int m=str1.length(),n=str2.length();

        int[][] dp=new int[m+1][n+1];

        for (int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if (str1.charAt(i) == str2.charAt(j))
                    dp[i + 1][j + 1] = dp[i][j] + 1;
                else
                    dp[i + 1][j + 1] = 0;
            }
        }
        return dp[m][n];
    }

    public static String findLongestCommonSubstring1(String str1,String str2){

        int m=str1.length(),n=str2.length();

        String[][] StringDP=new String[m+1][n+1];
        for (int i=0;i<=m;i++)
            Arrays.fill(StringDP[i],"");

        for (int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if (str1.charAt(i) == str2.charAt(j))
                    StringDP[i+1][j+1]=StringDP[i][j]+str1.charAt(i);
            }
        }

        String ans="";

        for(int i=0;i<=m;i++){
            if(StringDP[i][i].length()>ans.length())
                ans=StringDP[i][i];
        }
        return ans;
    }

    public static void main(String[] args){
        String str1="abcde";
        String str2="abgde";
        System.out.println(findLongestCommonSubstring(str1,str2));
        System.out.println(findLongestCommonSubstring1(str1,str2));
    }
}

这两个问题的转移方程几乎差不多,两个问题都带寻找对应字符串的动态规划代码。

72. Edit Distance(https://leetcode.com/problems/edit-distance/

class Solution {
    public int minDistance(String word1, String word2) {
        
        int m=word1.length(),n=word2.length();int insert=0,del=0,rep=0;
        int[][] Edit=new int[m+1][n+1];
        
        for(int j=0;j<n+1;j++)
            Edit[0][j]=j;
        for(int i=1;i<m+1;i++)
        {
            Edit[i][0]=i;
            for(int j=1;j<n+1;j++)
            {
                insert=Edit[i-1][j]+1;
                del=Edit[i][j-1]+1;
                if(word1.charAt(i-1)==word2.charAt(j-1))
                    rep=Edit[i-1][j-1];
                else
                    rep=Edit[i-1][j-1]+1;
                Edit[i][j]=Math.min(Math.min(insert,del),rep);
            }
        }
        return Edit[m][n];
    }
}

 

参考文献:《算法导论》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值