关于完全二叉树的最后一个非叶子结点的位置

设高度为 h h h的完全二叉树的最后一层结点个数为 x ∈ N + x\in \N^+ xN+,显然其结点个数为 N 总 = 2 h − 1 + x − 1 N_{总}=2^{h-1}+x-1 N=2h1+x1

接下来分类讨论。

①当 x = 2 n − 1 x=2n-1 x=2n1 ( n = 1 , 2 , 3 , ⋯   ) (n=1,2,3,\cdots) (n=1,2,3,)

叶子节点的个数为 N 叶 = 2 h − 2 − x − 1 2 + x − 1 = 2 h − 2 + x − 1 2 N_{叶}=2^{h-2}-\frac{x-1}{2}+x-1=2^{h-2}+\frac{x-1}{2} N=2h22x1+x1=2h2+2x1故非叶子结点的个数为
N 非叶 = 2 h − 1 + x − 1 − ( 2 h − 2 + x − 1 2 ) = 2 h − 2 + x − 1 2 N_{非叶}=2^{h-1}+x-1-(2^{h-2}+\frac{x-1}{2})=2^{h-2}+\frac{x-1}{2} N非叶=2h1+x1(2h2+2x1)=2h2+2x1
所以有 N 非叶 = N 总 2 N_{非叶}=\frac{N_{总}}{2} N非叶=2N

②当 x = 2 n x=2n x=2n ( n = 1 , 2 , 3 , ⋯   ) (n=1,2,3,\cdots) (n=1,2,3,)

叶子节点的个数为 N 叶 = 2 h − 2 − x 2 + x = 2 h − 2 + x 2 N_{叶}=2^{h-2}-\frac{x}{2}+x=2^{h-2}+\frac{x}{2} N=2h22x+x=2h2+2x故非叶子结点的个数为
N 非叶 = 2 h − 1 + x − 1 − ( 2 h − 2 + x 2 ) = 2 h − 2 + x 2 − 1 N_{非叶}=2^{h-1}+x-1-(2^{h-2}+\frac{x}{2})=2^{h-2}+\frac{x}{2}-1 N非叶=2h1+x1(2h2+2x)=2h2+2x1
所以有 N 非叶 = N 总 − 1 2 N_{非叶}=\frac{N_{总}-1}{2} N非叶=2N1
注意到此时 N 总 N_{总} N为奇数,从而 N 非叶 = N 总 − 1 2 = ⌊ N 总 2 ⌋ N_{非叶}=\frac{N_{总}-1}{2}=\lfloor\frac{N_{总}}{2}\rfloor N非叶=2N1=2N
综上,对于任意的 x ∈ N + x\in \N^+ xN+均有 N 非叶 = ⌊ N 总 2 ⌋ N_{非叶}=\lfloor\frac{N_{总}}{2}\rfloor N非叶=2N
故对于从1开始的下标,完全二叉树的最后一个非叶子结点位于其层序遍历的第 ⌊ N 总 / 2 ⌋ \lfloor N_{总}/2\rfloor N/2个位置。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值