题目大意:
有一些由数字组成的串。
定义两个串的子串相同:两个串的子串长度相同并且一个子串的所有数都加上一个数与另一个串恰好完全相同。
求所有串的最长的相同子串。
题目分析:
两个串相同定义为一个串加上一个数等于另一个串,那么这两个串的相同部分就是相邻两个元素的差值。所以我们考虑差分,当然第一个数就不用管了。
然后用差分之后的数组建一个广义后缀自动机。
然后我们再拿每个串放进去跑,在每个节点记录一个sum值代表有多少个串经过这个点,跑到一个点就蹦fail指针,把所有的sum都++,代表这个串来过……
为了避免重复,我们弄一个时间戳,当前串已经修改过的节点就不能再修改一次了,跳出就好了。
如果一个点的sum值等于n,就说明这个节点代表着n个串的某个子串,就用这个点的max_len来更新ans。
最后输出ans+1(因为你差分的时候就少了一个嘛,输出答案的时候要+1)。
代码如下:
#include<cstdio>
#include<map>
using namespace std;
inline int Max(int x,int y) {return x>y?x:y;}
struct SAM{
map<int,SAM*> son;
SAM *fa;
int max_len,sum,tim;
SAM(int _=0,int sum=0,int tim=0):fa(0x0),max_len(_),sum(sum),tim(tim){}
}*root=new SAM,*last=root;
int n,ans;
int a[1200][1200];
void extend(int x)
{
SAM *p=last;
SAM *np=new SAM(p->max_len+1);
while(p && !p->son[x]) p->son[x]=np,p=p->fa;
if(!p) np->fa=root;
else
{
SAM *q=p->son[x];
if(p->max_len+1==q->max_len) np->fa=q;
else
{
SAM *nq=new SAM(p->max_len+1);
nq->fa=q->fa;
nq->son=q->son;
q->fa=nq;np->fa=nq;
for(;p && p->son[x]==q;p=p->fa) p->son[x]=nq;
}
}
last=np;
return;
}
void query()
{
for(int i=1;i<=n;i++)
{
SAM *t=root;
for(int j=2;j<=a[i][0];j++)
{
int x=a[i][j]-a[i][j-1];
while(!t->son[x]) t=t->fa;
t=t->son[x];
SAM *tmp=t;
for(;tmp && tmp->tim!=i;tmp=tmp->fa)
{
tmp->sum++;
if(tmp->sum==n) ans=Max(ans,tmp->max_len);
tmp->tim=i;
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
last=root;
scanf("%d",&a[i][0]);
for(int j=1;j<=a[i][0];j++)
{
scanf("%d",&a[i][j]);
if(j!=1) extend(a[i][j]-a[i][j-1]);
}
}
query();
printf("%d",ans+1);
return 0;
}