- 博客(1859)
- 资源 (64)
- 问答 (1)
- 收藏
- 关注
原创 CV深度学习项目调试开发过程中报错记录【持续更新】
我排查定位到问题图片后分析出来的原因就是图片的命名中出现一些特殊的字符或者是无法被解析的字符,连续两个下划线也是不可以的比如我的就是"ad__name.jpg",这样的就是错误的,可以对自己的文件夹中的图像数据批量重命名处理即可。根据报错指示进行查看,发现报错位置是torchmetrics模块,大概率是安装的torchmetrics版本与代码要求的版本不一致。正确解决方案:更换torchmetrics版本为0.5版本。这里千万不要手欠去修改源码。.........
2022-08-11 13:46:45 8371 3
原创 AI项目开发实践记录【满满的回忆杀】
闲暇的时间里面基于一些特定场景中的数据集做了一下有意思的应用,零零散散、断断续续的也都没有一个整体的汇总,到底做了哪些内容,这会正好在清理磁盘,很多东西都删除了,整理的时候顺便回忆了一下一共做的应用。 后续有时间会持续更新记录!...
2022-06-17 19:47:52 927 5
原创 yolobile 道路损坏检测实战
本文是继前文如下: 《轻量级目标检测模型实战——杂草检测》 《yolov4-tiny目标检测模型实战——学生姿势行为检测》 《yolov5s 目标检测模型实战——火点烟雾检测实战》 《代替人工批卷?基于目标检测模型的试卷自动批阅实践》 《UAV 无人机检测实践分析》 后的第六篇目标检测系列博文,本文选用的模型并非前面几篇文章中的较为轻量级的模型,这里选用的是yolovbile模型,首先看下效...
2021-08-04 09:33:27 1352 2
原创 UAV 无人机检测实践分析
本文是继前文如下:《轻量级目标检测模型实战——杂草检测》《yolov4-tiny目标检测模型实战——学生姿势行为检测》《yolov5s 目标检测模型实战——火点烟雾检测实战》 《代替人工批卷?基于目标检测模型的试卷自动批阅实践》后的第五篇目标检测系列博文,本文选用的模型并非前面几篇文章中的较为轻量级的模型,这里选用的是yolov3-spp模型,先看效果图: 看一下百度百科中对无人机的介...
2021-04-26 16:41:26 1275
原创 代替人工批卷?基于目标检测模型的试卷自动批阅实践
本文是继前文如下: 《轻量级目标检测模型实战——杂草检测》 《yolov4-tiny目标检测模型实战——学生姿势行为检测》 《yolov5s 目标检测模型实战——火点烟雾检测实战》 后的第四篇目标检测系列博文,本文选用的模型并非前面几篇文章中的较为轻量级的模型,这里选用的是最为经典的yolov3模型,先看效果图: 本文的创作来源于一个很有意思的想法,我们引以为傲的深度学习能够帮...
2021-04-15 19:47:53 1096 14
原创 yolov5s 目标检测模型实战——火点烟雾检测实战
本文是继前文如下: 《轻量级目标检测模型实战——杂草检测》 《yolov4-tiny目标检测模型实战——学生姿势行为检测》 后的第三篇轻量级目标检测系列博文,本文选用的模型是YOLOv5s模型,先看效果图: 火点烟雾检测在实际生活中有很多的应用场景,比如:森林火点预警、道路黑烟车识别等等,可以借助于边缘端的检测设备高效地完成火点、烟雾等目标对象的预警检测,能够很大程度上降低财产损失,保障空气质量。 本文延续前文系列的模型训练...
2021-04-07 12:11:27 2382 2
原创 yolov4-tiny目标检测模型实战——学生姿势行为检测
本文是继上文《轻量级目标检测模型实战——杂草检测》后的第二篇轻量级目标检测系列博文,本文选用的模型是YOLOv4-tiny模型,相比于上文的YOLOv3-tiny有更好的效果,先看效果图: 在前面我写过一篇目标检测自己做实验的记录性也是入门的一篇文章,如下:Yolov3目标检测实战【实现图像中随机出现手写数字的检测】感兴趣的话可以去看看。当时主要是基于YOLOv3进行...
2021-04-01 12:44:09 3838 9
原创 轻量级目标检测模型实战——杂草检测
在前面我写过一篇目标检测自己做实验的记录性也是入门的一篇文章,如下: Yolov3目标检测实战【实现图像中随机出现手写数字的检测】 感兴趣的话可以去看看。 当时主要是基于YOLOv3进行的实验,因为YOLOv3本身的体积是非常大的,如果想要运行在一些计算能力比较弱的边缘端设备上面的话就会显得很吃力,计算能力和效率都会比较低下,所以在考虑边缘端部署...
2021-03-22 15:23:50 3004 17
原创 多片段时序数据建模预测实践
时序数据建模分析已经有很多相关的应用了,在这个领域里面LSTM网络绝对是占据着非常重要的作用,自从LSTM网络提出以来,陆陆续续又出现了很多相关的变种网络,传统的时序建模工作主要是基于一个指定的时序数据集进行模型的构建与预测分析的,但是在实际的工程使用中会有一种特殊的情况就是:我们通过实验所采集到的数据集往往不是绝对连续的而是多“片段”的。 何为 “片段”?以我之前的时序建模相关的文章来讲,诸如:气象数据预测、风力发电数据预测等等,都是具有一定数据规模的数据进行时序预测模型的构建,...
2021-02-02 19:21:33 1420 3
原创 Ubuntu16.04+Python3.6+深度学习环境+opencv+x264+ffmpeg基础镜像制作实战
对于经常最运维或者是开发的人来说docker应该是很熟悉的东西了,最近有一个需求就是需要在不同的平台上面去测试自己的项目,amd64、X86、ARM等等,目前的项目主要是在windows环境里面开发的,所以迁移到别的机器上面除了部署配置环境麻烦点其他的都还好,Linux下面的话部署运行项目如果借助于docker容器技术的话就会非常方便了,可扩展性也是很高的,这里就需要有一套比较高可用稳定的基础镜像来为项目提供所需的运行环境,今天花点时间从零开始实践,制作出来一个基础的镜像环境,主要以Ubuntu...
2020-11-08 11:33:06 1292
原创 Yolov3目标检测实战【实现图像中随机出现手写数字的检测】
接触目标检测这一行的话就不可能不知道Yolo系列的模型,因为它们的名气实在是太过于响亮了,这一点带来的好处就是网上会有铺天盖地的学习、介绍、实践资料,对于新手来说快速地学习掌握就比较便利了。 而我就是万千新手中的一名,接触到目标检测以来,着实也是走了不少的弯路,这也是没有办法的事情,毕竟自己一点基础没有,所以刚起步还是会慢一点。掐指算来接触目标检测已经有一段时间了,之前的一些模型也有学习实践过,但是整体的表现并不理想,要么是速度太慢要么是精度太低,最终锁定在了Yolov3系列,虽说现...
2020-10-15 09:37:44 2710 2
原创 零基础起步Keras+LSTM+CRF的实践命名实体识别NER
文本分词、词性标注和命名实体识别都是自然语言处理领域里面很基础的任务,他们的精度决定了下游任务的精度,其实在这之前我并没有真正意义上接触过命名实体识别这项工作,虽然说读研期间断断续续也参与了这样的项目,但是毕业之后始终觉得一知半解的感觉,最近想重新捡起来,以实践为学习的主要手段来比较系统地对命名实体识别这类任务进行理解、学习和实践应用。 当今的各个应用里面几乎不会说哪个任务会没有深度学习的影子,很多子任务的发展历程都是惊人的相似,最初大部分的研究和应用都是集中在机器学习领域里面,...
2020-07-18 12:06:01 2640 2
原创 Python开发过程中错误解决记录【持续更新记录,欢迎交流】
2020.07.10错误:Object arrays cannot be loaded when allow_pickle=False出现在numpy加载本地.npy文件的时候解决:np.load('a.npy', allow_pickle=True)
2020-07-10 15:08:25 1096
原创 基于pycrfsuite和sklearn_crfsuite的命名实体识别NER实战【以CoNLL2002数据集为基准】
文本分词、词性标注和命名实体识别都是自然语言处理领域里面很基础的任务,他们的精度决定了下游任务的精度,其实在这之前我并没有真正意义上接触过命名实体识别这项工作,虽然说读研期间断断续续也参与了这样的项目,但是毕业之后始终觉得一知半解的感觉,最近想重新捡起来,以实践为学习的主要手段来比较系统地对命名实体识别这类任务进行理解、学习和实践应用。 对于我个人来说学习一个新的东西,比较喜欢实践为主去学习,因为最开始接触机器学习的时候都是从空洞的理论开始的,后来学了好久发现,这些理论知识的学习固然...
2020-07-09 10:41:47 2705 2
原创 零基础实战Keras模型转化为RKNN格式模型成功运行在RK3399Pro板子上
深度学习实验大多是在服务器端进行的,在实际的应用中,想要把训练好的模型投入实际的应用中去的时候往往需要转化为适应于边缘端或者是移动端计算的格式,一是缩减模型大小降低原有的参数体量,二是借助于硬件环境的加速能力,提升模型的推理速度,总之就是为了能够在板子上跑的更快点。 在实际的开发实践中,我们选择使用的是RK3399Pro这个型号的板子,提供了NPU级别的硬件加速计算能力,官方的文档地址在这里,首页截图如下所示: 这里是官方给出来的云计算和边缘计算的简单对比说明:云计...
2020-07-02 15:45:11 3738
原创 两路共享LSTM时序数据预测实战+界面可视化应用
在我之前的文章中,已经对LSTM的实际应用有过很多的实践和说明了,今天介绍的LSTM模型跟之前的不同,在以往的时序数据建模中,我们的输入端是只有一个的,也就是说入口处只有“单条通路”,本文提及的两路LSTM,是在输入端就要两个输入,所以称之为两路共享的LSTM模型,话不多说这里先来看下简单的模型结构,如下所示: 从上面的模型结构图中可以很清晰地看到:入口处有两个维度的数据输入,之后一同进入到LSTM模型中,这里我们为了简单起见,也是为了降低计算量,毕竟深度学习模型是比较耗费资源的...
2020-06-17 19:35:58 3199 8
原创 基于深度学习模型+Attention机制的分类模型构建实践分析【以鸢尾花数据集为例】
在我之前的文章中,没有或者是很少有涉及到Attention机制的使用,因为之前做的很多工作中也不需要用到这个技术,周末正好有点时间就想学一下这个Attention机制,看看到底怎么样去结合使用,怎么样能够提升我们原有模型的性能。 当我们人在看一样东西的时候,我们当前时刻关注的一定是我们当前正在看的这样东西的某一地方,换句话说,当我们目光移到别处时,注意力随着目光的移动也在转移,这意味着,当人们注意到某个目标或某个场景时,该目标内部以及该场景内每一处空间位置上的注意力分布是不一样的。...
2020-06-14 20:26:25 2412 8
原创 Pytorch基于深度学习模型Seq2Seq的聊天机器人构建与应用部署实战
聊天机器人是非常常见而广泛的应用,很多企业都有很多机器人客服的需求,比如:移动、电信、联通、淘宝、京东等等,聊天机器人的本质就是文本数据处理,我的主要研究方向并不是文本处理相关的,但是断断续续学习、工作中接触到了一定的文本数据处理的任务,对文本数据处理也算得上是有一定的了解程度吧。 聊天机器人的应用可以简单理解为“输入一句话,机器返回一句响应的话”,返回的话跟你的话或者是问题相关度比较高,让你察觉不到是在跟一台机器聊天,这里模型需要能够比较确切地了解或者是解读清楚你输入的文本数据,然...
2020-06-08 19:38:24 4039 8
原创 信号数据EMD分解+IMF时序数据LSTM预测建模实践
周末的时间闲下来了,想到之前计划的事情还未执行的还有很多,正好拿过来做一下,今天主要是想学习和实践一下信号领域的数据的处理和建模内容,从网上找到了一个振动信号相关的数据集,首先,想先基于EMD算法完成信号的 分解处理,之后基于LSTM模型来实现时序数据的建模预测分析。 对于现在的我来说,属于数据信号处理领域里面的小白,所以写这篇文章很可能会有错误或者是不合理的地方,如果问题欢迎指出,欢迎交流学习,同时呢?这里也是自己学习过程的记录,包括自己在了解一些信号处理算法时的资料等,也都一...
2020-05-30 17:24:00 8562 51
原创 基于卷积神经网络模型的MSTAR高分辨率图像数据集识别实践
卷积神经网络CNN如今早已是深度学习的核心,广泛应用于各类任务中,在我以往的图像数据处理中大多接触的是比较具体的图像数据,比如:手写数字、手写字母、人脸数据、动物数据、交通信号数据等等,对于遥感或者是卫星相关的数据涉及得很少很少,今天找到了一个比较有意思的数据集【MSTAR高分辨率图像数据集】,想基于这个数据集来构建一下自己的卷积神经网络模型做一点实践。 首先,查阅了一些相关的研究文献资料,简单介绍一下【MSTAR高分辨率图像数据集】 当前用于研究SAR ATR 的图像...
2020-05-24 16:58:29 4638 10
原创 史上最迷你人脸数据集olivettifaces基于卷积神经网络模型+迁移学习构建人脸识别模型实战
一般来说,想要搭建自己的深度学习模型来对自己的图像数据做处理往往是需要准备很多数据才行的,不然模型性能是很差的,之前也做过一些人脸识别的应用实践,但大都是需要自己去采集自身的人脸图像数据,这个就比较主观了,因为你可以采集的很多很多人脸图像数据,或者也可以采集的很少,但是很少的话一般效果都不会太好。今天找到一个很有意思的数据集,是我目前接触到的人脸识别领域中最为迷你的数据集,为什么说它“迷你”呢?主要有两个原因:1、种类很多,一共包含有40个人的图像数据2、单个人的图像数据很少只有10张,这...
2020-05-16 18:20:04 3424 4
原创 Python 手写数字识别实战分享
手写数字识别作为一个深度学习类入门级别的应用,被广大爱好者所使用,在实际的工作中正好有一个实际的场景需求用到了数字和字母的识别,这里先以手写数字识别为例来对该类型的任务进行讲解。 本文的实践主要是基于卷积神经网络来进行的,卷积神经网络作为如今深度学习的核心自然有它独特的地方。 卷积神经网络的提出是受生物自然视觉认知机制的启发,它的核心在于其采用了卷积层和子采样层组合的特征提取方式。CNN一共采用了三种技术来降低模型的计算复杂度。1)局部感受野 首先是...
2020-05-13 21:25:28 2110
原创 基于回归模型的地理空间经纬度预测实践
在值预测相关的任务里面回归模型使用的非常得多,从最简单的逻辑回归模型到复杂点的集成回归模型,可以根据具体任务的适用程度来尝试或者决定使用什么样的模型来构建自己的预测模型。 本文主要是基于APP采集到的行走数据,也就是地理空间里面的经纬度数据来对未来位置进行预测分析,我们这里主要是将行走的数据建模成了一个时序数据分析问题,因为物体的移动轨迹不会是随机移动的是随着时间推移,有规...
2020-05-03 21:26:41 2784 8
原创 Python基于迁移学习的手势识别实战【图像多分类任务】【实测准确度超过99.5%】
本文是该专栏【迁移学习】系列文章的第三篇文章,主要是实现基于迁移学习的手势识别,个人感觉还是很有意思的一件事情吧,下面是系列文章中的一些基础知识。 迁移学习是一种很强大的深度学习技术,在实际应用中解决图像分类等问题中效果卓越,用一句简单的话来说就是“站在巨人的肩膀山学习”,大多数针对图像分类任务而开源出来的迁移学习模型很多都是基于ImageNet数据集开...
2020-04-22 20:50:58 1935
原创 异常值检测算法 IsolationForest、EllipticEnvelope、OneClassSVM实践
异常点或者是异常值检测算法是机器学习领域中很重要的一个分支,有效地挖掘出来数据中的异常值对于建模分析等工作来说是很重要的,异常点的检测算法也有很多,主要分为以下几种:异常检测的方法:(1)基于模型的技术:首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。(2)基于邻近...
2020-04-14 20:07:50 2634 2
原创 基于双向长短期记忆神经网络【biLSTM】模型的污染数据预测实战
时序数据建模分析已经有很多相关的应用了,在这个领域里面LSTM网络绝对是占据着非常重要的作用,自从LSTM网络提出以来,陆陆续续又出现了很多相关的变种网络,今天从网上找到了一份环境气象领域相关的数据集,可以用于时序数据的建模分析,这里就基于这个数据集来实战双向LSTM网络的时序建模。 这是一张比较形象比较简单的示意图: 双向,顾名思义理解起来也很简单...
2020-04-13 15:18:31 7158 27
原创 Python基于迁移学习的猫狗大战实战【图像二分类任务】【实测准确度超过99.5%】
迁移学习是一种很强大的深度学习技术,在实际应用中解决图像分类等问题中效果卓越,用一句简单的话来说就是“站在巨人的肩膀山学习”,大多数针对图像分类任务而开源出来的迁移学习模型很多都是基于ImageNet数据集开发的,这些预训练的模型往往都是那些谷歌、亚马逊等大厂耗费大量的计算资源训练几周的时间跑出来的模型,在图像的特征提取计算上都有着非常不错的性能,以至于对于我们...
2020-04-03 13:17:47 2226 2
原创 Python基于迁移学习的交通信号识别实战【图像多分类任务】【实测准确度超过96.7%】
迁移学习是一种很强大的深度学习技术,在实际应用中解决图像分类等问题中效果卓越,用一句简单的话来说就是“站在巨人的肩膀山学习”,大多数针对图像分类任务而开源出来的迁移学习模型很多都是基于ImageNet数据集开发的,这些预训练的模型往往都是那些谷歌、亚马逊等大厂耗费大量的计算资源训练几周的时间跑出来的模型,在图像的特征提取计算上都有着非常不错的性能,以至于对于我们【小批量数据+简单神经...
2020-04-01 11:39:13 1161
原创 基于堆叠卷积长短期神经网络【CNNLSTM】模型的时序数据预测分析
在实际的工作中,时序类数据建模分析是比较重要的一部分,我们可以采用机器学习来构建一般的回归模型来进行值预测分析,也可以基于神经网络来搭建网络模型来完成时序数据预测分析,在较为简单的任务中,使用机器学习来构建回归模型一般是可以满足需要的,但是当实际面对的问题相对复杂的时候,简单的模型往往就难以胜任了,这里就需要更加高效,更具有表达能力的模型来完成这一工作,LSTM这一类模型就是其中的佼...
2020-03-13 16:20:07 7726 24
原创 基于差分整合移动平均自回归模型(ARIMA)的时序数据滚动预测建模与网格调参优化实战
ARIMA模型(英语:Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。 AR...
2020-03-12 15:35:29 5840 2
原创 基于头条新闻数据的文本分类系统实战
新闻数据本质上来说也属于文本数据,新闻分类本质也就归成了文本分类系统,本文主要是自己业余时间里面的一个小实践,主要是完成从数据采集、存储解析、文本向量化处理、分类模型构建几个步骤,方法和套路都是比较常规的,整体看效果还是不错的。 这里我们初步选定今日头条来作为我们的数据源站点,毕竟头条的新闻类型很多,数据更新很快,尤其是如今火热的自媒体行业的兴起,一大批创作者涌入头条里...
2020-03-12 09:48:14 3137 3
原创 基于深度学习的验证码破解实战【源站图像数据采集+图像预处理+图像切割+模型识别分析】
深度学习应用于图像处理领域应该说有很长一段时间了,相关的研究成果也有很多的积累了,从项目和实践入手是我觉得的最好最快速有效的学习手段,之前有过实际的验证码识别项目,今天正好有时间就想着把之前做的项目以另外的一种形式展现出来,这里没有直接选用我已经上线的项目作为讲解的对象,而是另外找了一个数据网站,对其验证码进行研究后,从零开始搭建自己的识别模型,主要就是:总结-实践-学习-收获。...
2020-03-05 16:56:45 1109
原创 实地踩坑,新鲜出炉,阿里云GPU服务器Centos7.7深度学习环境搭建实战
做深度学习相关的项目,最痛苦的莫过于没有GPU资源,好在今年终于等来了第一台深度学习服务器,虽然是采用购买租用的形式,但这并不影响我们实际的使用,大多数人现在购买云端服务器资源首选可能都会是阿里云,毕竟现在的云端做得很好,闲话就不多说了,这里主要是记录一下自己的实际安装使用过程,从昨晚开始安装,一步一个坑,到现在的成功使用,分享一点自己的亲身实践经历,希望能够帮到需要的人。1...
2020-03-03 14:04:35 2352
原创 基于LSTM的【气象数据+发电数据】多步时序数据建模预测分析实战
笔者三年多的从业经历里面积累很多关于时序数据建模预测的经验,因为工作性质的原因,接触到的较多的数据类型均为时序数据,在处理这种类型数据的时候会较多使用到回归模型、RNN或者是LSTM模型,所以本文主要基于以往的实践经验来分享一些时序户数建模领域里面的常用做法。 既然说到了LSTM,就要简单的介绍一下RNN(Recurrent Neural Network,RNN)循...
2020-02-03 17:19:21 5308 10
原创 基于豆瓣影评数据的文本分析系统【数据爬取+数据清洗+数据库存储+LDA主题挖掘+词云可视化】
本分析中很多的工作都是基于评论数据来进行的,比如:滴滴出行的评价数据、租房的评价数据、电影的评论数据等等,从这些语料数据中能够挖掘出来客户群体对于某种事物或者事情的看法,较为常见的工作有:舆情分析、热点挖掘和情感分析。 如果想要了解关于文本分类或者是情感分析相关的工作内容,可以阅读我的《数据建模实战》专栏文章,下面是链接信息: ...
2019-12-17 16:26:15 19540 12
原创 基于机器学习和深度学习的推荐系统实战【图书推荐、电影推荐、音乐推荐】
推荐系统在我们日常生活中发挥着非常重要的作用,相信实际从事过推荐相关的工程项目的人或多或少都会看多《推荐系统实战》这本书,我也是读者之一,个人感觉对于推荐系统的入门来说这本书籍还是不错的资料。很多商场、大厂的推荐系统都是很复杂也是很强大的,大多是基于深度学习来设计强有力的计算系统,本文是笔者在公司实践项目中实际做过的推荐系统实践经验分享。技术层面主要从机器学习和深度学习两个方面来分别...
2019-12-17 14:37:33 6610
原创 基于文本数据的情感分析系统
在自然语言处理里面,情感分析大类上归属于文本分类领域,是NLP非常常见也是很重要的一种任务类型,在大多数已开展的分析研究工作中,主要是基于评论数据集,诸如:滴滴打车评论数据集、豆瓣猫眼影评数据集;或者是一些社交媒体数据集,诸如:Twitter数据集、微博数据集、人人网数据集等等。 在开始本文的主要内容之前,我们先看一下有意思的东西,我以当今的小鲜肉【王俊凯】为搜索对象...
2019-12-17 11:05:46 9574
原创 优秀资源推荐
最近整理了好多的数据,各式各样的都有,后面会陆陆续续分享出来,这里会持续更新我的资源分享,当然了,十分欢迎各位朋友推送或者是推荐资源,我一并提交更新,仅作为学习使用,切勿用作其他用途,谢谢合作!计算机类各类书籍资源 常用工具资源...
2019-11-23 20:05:54 811 4
原创 基于微博数据的人物性格分类系统
声明: 本博客中的VIP系列博客内容严禁转载,未经允许不得以任何形式进行传播,违者追究侵权责任! 基于微博数据的人物性格分类系统 ...
2019-10-08 11:58:44 1443
hadoop-mysql-hbase环境部署套装.zip
2020-09-08
Ubuntu下gcc-7.5.0安装完整依赖.zip
2020-05-22
猫狗大战迁移学习项目.zip
2020-04-03
Microsoft Visual C++ 安装包【14.0和9.0】.rar
2019-09-05
pyltp安装包whl文件.rar
2019-08-08
中科院自动化所宗成庆-自然语言处理方法与应用.rar
2019-08-08
2018知识图谱发展报告.rar
2019-08-08
SQL SERVER查增改删,导入导出简便工具.rar
2019-08-08
Python数据分析与数据化运营.zip
2019-07-15
坦克大战tank.zip
2019-06-14
Docker技术入门与实战
2018-12-16
第一本Docker书(完整版)
2018-12-16
Deep Learning with PyTorch
2018-12-07
Python高效开发实战——Django、Tornado、Flask、Twisted
2018-11-27
python2和python3版本可用的OpenCV安装包
2018-11-16
Python计算机视觉编程(含源码)
2018-11-16
linecache安装包(python2和python3兼容)
2018-11-15
数据算法 Hadoop Spark大数据处理技巧
2018-10-31
sklearn超详细实践文档说明
2018-09-16
大规模网页相似度计算
2017-06-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人