yolov5s 目标检测模型实战——火点烟雾检测实战

本文介绍了使用YOLOv5s模型进行火点烟雾检测的实战过程,包括模型配置、数据集处理、训练与评估。通过darknet框架完成训练,详细阐述了数据标注、解析转换以及训练过程中的主要指标可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      本文是继前文如下:

     《轻量级目标检测模型实战——杂草检测》

    《yolov4-tiny目标检测模型实战——学生姿势行为检测》

      后的第三篇轻量级目标检测系列博文,本文选用的模型是YOLOv5s模型,先看效果图:

       火点烟雾检测在实际生活中有很多的应用场景,比如:森林火点预警、道路黑烟车识别等等,可以借助于边缘端的检测设备高效地完成火点、烟雾等目标对象的预警检测,能够很大程度上降低财产损失,保障空气质量。

       本文延续前文系列的模型训练框架,基于darknet框架来完成yolov5s模型的训练工作。

       相比于yolov3和yolov4系列来说,yolov5系列相对更加新颖一些ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值