本文是继前文如下:
《yolov4-tiny目标检测模型实战——学生姿势行为检测》
后的第三篇轻量级目标检测系列博文,本文选用的模型是YOLOv5s模型,先看效果图:
火点烟雾检测在实际生活中有很多的应用场景,比如:森林火点预警、道路黑烟车识别等等,可以借助于边缘端的检测设备高效地完成火点、烟雾等目标对象的预警检测,能够很大程度上降低财产损失,保障空气质量。
本文延续前文系列的模型训练框架,基于darknet框架来完成yolov5s模型的训练工作。
相比于yolov3和yolov4系列来说,yolov5系列相对更加新颖一些ÿ