基于目标检测的电车充电插孔检测实践

本文介绍了使用目标检测技术,特别是YOLOv4-tiny模型,来实现电车充电插孔的定位。通过Darknet框架进行训练,数据集来源于网络,包含约1000张手动标注的图像。训练结果显示,Class和Obj精度超过99%。然而,未见过的数据分布会导致漏检和错检,提示需要进行数据增强以提高模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

好久没有更新目标检测实战里面的专栏文章了,最近又看到了有意思的事情了这里就想实践一下,先看效果图:

      可能最开始直接去看这个图的话会觉得很突兀,接下来简单说下做的是什么东西,以及为什么会想做这么一个事情。

       前几天的时候看到一个酷炫的视频介绍,Tesla正在研发能够自主完成充电插孔寻找定位并进行充电操作的只能充电头,脑补一下画面就觉得有一种科幻电影里面的既视感,这个只是题外话,从技术层面来理解这个功能的话其实还是一个图像处理的工作,需要在智能充电头上面装有摄像头,通过实时的视频流数据处理结果来不断地调整高度、角度等等,这是一个不断学习的过程,还是很复杂的,这也不是本文主要考虑的事情,在视频流数据处理的过程中有一个关键的技术就是目标检测技术,需要对摄像头传入的图像进行检测计算,确定充电插孔的位置等信息,用于指导机械头的运动,我这里也是做了简单的实践。

      下面先看看下具体的数据集:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值