之前做过生猪的检测识别,最近又有于淼、鸭子、鸡等等的检测,感觉AI应用到智慧农业方面还是一个有可为的方向的,这里主要是基于yolov5来开发实践一个家禽检测系统,首先看下效果:
鸭子检测识别:

鸭头计数效果:

接下来看下数据集:


YOLO格式标注文件如下:

实例标注数据如下:
0 0.0656 0.3222 0.0813 0.1556
0 0.1339 0.2546 0.0615 0.1463
0 0.2036 0.2676 0.1156 0.1352
0 0.1797 0.3648 0.1281 0.1481
0 0.3307 0.2898 0.0844 0.1722
0 0.3036 0.412 0.101 0.1907
0 0.3979 0.3787 0.1208 0.2056
0 0.4865 0.3019 0.0625 0.1926
0 0.5276 0.3704 0.0802 0.2481
0 0.562 0.1981 0.0781 0.1481
0 0.6078 0.2028 0.049 0.1204
0 0.7052 0.2472 0.0875 0.1574
0 0.6839 0.313 0.1094 0.1333
0 0.7891 0.3083 0.1302 0.2241
0 0.7344 0.3639 0.1542 0.2167
0 0.5839 0.3306 0.0844 0.1241
0 0.601 0.187 0.0604 0.1148
0 0.6411 0.2176 0.051 0.1019
0 0.7292 0.1741 0.0583 0.0815
0 0.5057 0.1333 0.0385 0.1259
0 0.5578 0.1102 0.0573 0.0648
0 0.5307 0.0444 0.0344 0.063
0 0.6188 0.0852 0.025 0.0963
VOC格式标注文件如下所示:

实例标注内容如下所示:
<annotation>
<folder>DATASET</folder>
<filename>images/00010.jpg</filename>
<source>
<database>The DATASET Database</database>
<annotation>DATASET</annotation>
<image>DATASET</image>
</source>
<owner>
<name>YSHC</name>
</owner>
<size>
<width>960</width>
<height>540</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>32</xmin>
<ymin>127</ymin>
<xmax>104</xmax>
<ymax>216</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>104</xmin>
<ymin>89</ymin>
<xmax>156</xmax>
<ymax>164</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>139</xmin>
<ymin>107</ymin>
<xmax>257</xmax>
<ymax>177</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>115</xmin>
<ymin>163</ymin>
<xmax>240</xmax>
<ymax>237</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>280</xmin>
<ymin>98</ymin>
<xmax>339</xmax>
<ymax>195</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>254</xmin>
<ymin>169</ymin>
<xmax>339</xmax>
<ymax>262</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>330</xmin>
<ymin>142</ymin>
<xmax>443</xmax>
<ymax>259</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>436</xmin>
<ymin>105</ymin>
<xmax>498</xmax>
<ymax>209</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>485</xmin>
<ymin>121</ymin>
<xmax>547</xmax>
<ymax>273</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>504</xmin>
<ymin>56</ymin>
<xmax>571</xmax>
<ymax>125</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>553</xmin>
<ymin>72</ymin>
<xmax>612</xmax>
<ymax>135</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>577</xmin>
<ymin>83</ymin>
<xmax>645</xmax>
<ymax>173</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>633</xmin>
<ymin>77</ymin>
<xmax>710</xmax>
<ymax>167</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>697</xmin>
<ymin>101</ymin>
<xmax>828</xmax>
<ymax>221</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>634</xmin>
<ymin>125</ymin>
<xmax>791</xmax>
<ymax>248</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>448</xmin>
<ymin>79</ymin>
<xmax>487</xmax>
<ymax>124</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>606</xmin>
<ymin>110</ymin>
<xmax>717</xmax>
<ymax>175</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>517</xmin>
<ymin>138</ymin>
<xmax>600</xmax>
<ymax>204</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>680</xmin>
<ymin>73</ymin>
<xmax>734</xmax>
<ymax>111</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>466</xmin>
<ymin>38</ymin>
<xmax>507</xmax>
<ymax>96</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>510</xmin>
<ymin>39</ymin>
<xmax>565</xmax>
<ymax>71</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>577</xmin>
<ymin>14</ymin>
<xmax>608</xmax>
<ymax>68</ymax>
</bndbox>
</object>
<object>
<name>duck</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>495</xmin>
<ymin>1</ymin>
<xmax>533</xmax>
<ymax>37</ymax>
</bndbox>
</object>
</annotation>
这里我一共做了两组实验从前面的效果图也不难看出的,第一组主要是检测鸭子,第二组主要是检测鸭头,在同样的参数配置下,我们看下结果对比。
【第一组:检测鸭子】


【第二组:检测鸭头】


从结果评估上面直观来看:鸭子检测的效果要略优于鸭头检测,这个可能是因为鸭头本身属于小目标的缘故吧。
模型方面使用的都是最轻量级的n系列的模型,如下:
#Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
#Backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
#Head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
其余所有的参数设置均保持一致。