选美交给AI,基于机器学习模型开发实现人脸评分系统

最近碰到一个比较好玩的任务,就是想要基于人工智能模型实现人脸自动评分,说白了跟古代的选美有点像了,让机器学习模型和深度学习模型基于人工标注的数据集进行训练学习,之后对人脸进行自动评分,目前我主要是先做了基于机器学习模型的项目,核心的方法就是基于hog实现特征提取,之后基于随机森林模型实现回归计算了。

首先看下效果图:

整体项目开发流程如下所示:

 原始图像转化为特征向量主要是基于hog实现的,这个网上有很多的开源实现,也可以借助于skimage实现都是可以的,这里就不再赘述了。

人脸评分这里是基于随机森林回归模型实现的回归拟合计算。核心实现如下:

rfr=RandomForestRegressor(n_estimators=100)
y_pred=rfr.fit(X_train, y_train).predict(X_test)
print('y_pred: ', y_pred)

完成模型训练后,在测试集上进行评估分析,这里绘制对比分析可视化图像如下所示:

 从R2指标来看,模型的拟合程度还是很不错。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值