随着科技的飞速发展,人工智能(AI)技术已经渗透到我们生活的方方面面,从智能家居到自动驾驶,再到医疗健康,其影响力无处不在。然而,当我们把目光转向中国的农业领域时,一个令人惊讶的事实映入眼帘——在这片广袤的土地上,农业生产仍然大量依赖人力,而非智能机械化。与此同时,国外的农业生产模式早已进入全面机械化的新时代。面对这一现状,我们不禁要思考:如何将AI技术融入农业,引领农业生产走向数字化、智能化?
樱桃,作为一种高价值水果,其种植和采摘过程一直是农业生产中的关键环节。传统的樱桃采摘方式主要依靠人力,这不仅效率低下,而且成本高昂。更重要的是,随着人口老龄化问题的加剧,劳动力短缺已经成为制约农业发展的瓶颈。因此,探索樱桃采摘的智能化解决方案显得尤为重要,深度学习技术的快速发展为我们提供了新的思路。通过结合机械设计和AI智能模型,我们可以实现樱桃采摘的完全智能机械化。具体来说,这种智能采摘系统可以通过前端连接的摄像头对果树上的果实进行实时检测识别。利用深度学习算法,系统能够准确地分辨出已经成熟的果树、半成熟的果实和未成熟的果实。一旦识别出成熟的果实,系统便会将信号传递给机械臂,机械臂则会自动完成采摘动作。这种智能采摘系统的优势显而易见。首先,它大大提高了采摘效率,减少了人力成本。其次,由于机械臂的精准操作,可以减少对果树的伤害,保护果树资源。此外,智能采摘系统还可以根据果实的成熟度进行分拣,提高产品的品质和市场竞争力。本文正是基于这样的背景思考下,想要从软件实验实践分析的角度出发,来实际探索分析此举落地应用的可行性,首先看下实例效果:
接下来简单看下实例数据集:
本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。
YOLOv3的主要优点如下:
实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。
多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。
全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。
简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。
YOLOv3也存在一些缺点:
较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。
较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。
YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。
训练数据配置文件如下:
# path
train: ./dataset/images/train/
val: ./dataset/images/test/
# number of classes
nc: 3
# class names
names: ['immature', 'mature', 'medium_mature']
我们开发构建了yolov3全系列的参数模型,包含:yolov3-tiny、yolov3和yolov3-spp,实验阶段保持完全相同的参数设置,计算输出如下所示:
等待训练完成我们来整体对比可视化。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。
【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。
【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
从整体实验结果上来看:tiny系列的模型被拉开了明显的差距,相比之下效果最差,yolov3和yolov3-spp两款模型则达到了相近的水平没有明显的差距。考虑到yolov3本身的参数量更小这里最终选择使用yolov3来作为线上推理模型。接下来详细看下YOLOv3模型的结果详情。
【离线推理实例如下】
【训练可视化如下所示】
【混淆矩阵】
【类别分布可视化】
【PR曲线】
【Batch实例】
整体实践做下来,yolov3也表现出来了不错的性能,这可能也是跟我们构建的数据集偏实验性质有关吧,真正落地的场景会更加复杂化多样化。
要实现樱桃采摘的完全智能机械化还面临着一些挑战。例如,如何确保摄像头在各种天气条件下都能准确识别果实?如何保证机械臂在复杂环境中的稳定性和灵活性?这些问题都需要我们进一步研究和探索。随着技术的不断进步和创新,我们有理由相信这些挑战都将被克服。在不远的将来,我们或许能够看到这样的场景:在广袤的樱桃园中,智能采摘机器人在忙碌地工作着,它们通过AI技术精准地识别出成熟的果实并将其采摘下来。这样的场景不仅将极大地提高农业生产的效率和质量,也将为农民带来更多的收益和幸福。
本文也仅作为抛砖引玉,智能机械化是农业生产未来的发展方向。通过结合机械设计和AI技术,我们可以实现樱桃等水果的智能化采摘和分拣工作,推动农业生产向数字化、智能化迈进。让我们共同期待这一天的到来!