发展新质生产力赋能工业产品质检,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建智能PCB电路板质检分析系统

在PCB电路板的生产制造过程中,质量检测是确保产品质量、维护品牌形象的关键环节。然而,传统的人工检测方式依赖于经验丰富的工人师傅通过光学显微镜等设备进行逐块检查,这不仅劳动强度大、效率低下,而且受限于人的主观判断、视力疲劳及环境变化等因素,难以保证检测的全面性和准确性。此外,人工检测无法实现24小时不间断作业,无法满足现代制造业对高效、连续生产的需求。随着科技的飞速发展,人工智能(AI)技术已经渗透到社会经济的各个领域,成为推动产业升级的重要力量。在电路板(PCB)生产制造这一传统行业中,AI技术的引入正悄然改变着生产流程与质量控制方式,特别是在PCB电路板缺陷检测环节,AI智能化检测模型正逐步取代传统的人工检测方式,极大地提升了检测效率与准确性。面对传统检测方式的诸多挑战,AI智能化检测模型应运而生。这一技术的核心在于利用深度学习等先进算法,通过大量标注好的PCB电路板缺陷数据进行模型训练,使机器能够自动识别并分类各种缺陷,如焊盘缺失、线路缺口、断路、短路、毛刺、伪铜等。

企业可以在产线上安装高清视频摄像头,实时捕捉PCB电路板的生产过程,并将采集到的图像数据传输至云端或本地服务器进行处理。经过预处理的图像数据会被送入已经训练好的AI检测模型中进行分析,模型会迅速识别出潜在的缺陷,并给出相应的置信度评分。对于高置信度的检测结果,系统可以直接判定并反馈至生产线进行相应处理;而对于低置信度的结果,则可通过人工复审的方式进行二次确认,从而确保检测的准确性。

AI智能化检测模型的发展也是适应新质生产力发展的需要,相较于传统基本依靠人工的质检方式有多方面的优势:
1、高效性:AI检测模型能够实现对PCB电路板的快速扫描与识别,显著提升了检测效率,降低了人力成本。
2、准确性:基于大数据训练的AI模型能够克服人眼识别的局限性,提高检测的准确性和一致性。
3、全天候作业:AI系统不受时间和环境的影响,可实现24小时不间断检测,满足现代制造业对连续生产的需求。
4、可扩展性:随着算法的不断优化和数据的持续积累,AI检测模型的性能将不断提升,能够更好地适应复杂多变的生产环境。

本文正是基于这样的思考背景下考虑从实验的角度出发开发构建智能化的PCB缺陷检测识别模型,在前面系列博文中,我们已经有相关的开发实践了,感兴趣的话可以自行移步阅读即可:

《助力质量生产,基于目标检测模型MobileNetV2-YOLOv3-Lite实现PCB电路板缺陷检测》

《基于yolov5开发构建PCB电路板瑕疵目标检测系统》

《助力工业产品质检,基于yolov5l集成CBAM注意力机制开发构建智能PCB电路板质检分析系统》 

《助力工业产品质检,基于YOLOv5全系列参数模型【n/s/m/l/x】开发构建智能PCB电路板质检分析系统》

《助力工业产品质检,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建智能PCB电路板质检分析系统》

《助力工业产品质检,基于YOLOv8开发构建智能PCB电路板质检分析系统》

本文的目标基于早期经典的YOLOv3全系列的参数模型来开发构建智能检测系统,首先看下实例效果:

简单看下数据集

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

训练数据配置文件如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/


# number of classes
nc: 6


# class names
names: ['missing_hole','mouse_bite','open_circuit','short','spur','spurious_copper']


我们开发构建了yolov3全系列的参数模型,包含:yolov3-tiny、yolov3和yolov3-spp,实验阶段保持完全相同的参数设置,等待整体实验完成我们来对其进行整体的性能评估测试。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

从整体实验结果上来看:tiny系列的模型被拉开了明显的差距,相比之下效果最差,yolov3和yolov3-spp两款模型则达到了相近的水平,但是spp效果优于yolov3模型。最终选择使用yolov3-spp来作为线上推理模型。接下来详细看下yolov3-spp模型的结果详情。

【离线推理实例如下】

【训练可视化如下所示】

【混淆矩阵】

【PR曲线】

【Batch实例】

发展新质生产力是引领工业智造的迫切需求,AI产业化结合赋能工业生产质检是时代的主旋律,AI智能化检测模型在PCB电路板生产制造领域的应用,不仅解决了传统人工检测方式中存在的效率低、易出错等问题,还为企业带来了前所未有的生产效率和质量控制能力。随着技术的不断进步和应用的深入拓展,我们有理由相信,AI将在更多领域展现出其强大的潜力与价值,引领制造业向更加智能化、高效化的方向发展。未来,PCB电路板的生产制造将更加依赖于AI技术的支持,共同开启智能制造的新篇章。

  • 28
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值