AI赋能社区管理:智能监控下的文明养宠新风尚,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统

在快节奏的现代生活中,宠物已成为许多人心灵的慰藉,它们不仅是家庭的一员,更是都市人寻求情感寄托的重要方式。然而,随着宠物数量的激增,一些不文明养宠行为也随之浮现,如公共场所不牵绳遛狗、宠物粪便不及时清理等,这些行为不仅破坏了公共环境卫生,也给其他居民带来了不便与困扰。传统依赖社区物业人员的管理方式,因人力有限,往往难以做到全面且及时的监管,这无疑加剧了问题的复杂性。

幸运的是,随着人工智能(AI)技术的飞速发展,这一难题有了新的解决方案。AI技术以其强大的数据处理与分析能力,正逐步渗透到社会管理的各个层面,为社区文明养宠提供了新的可能。借助遍布社区的摄像头网络,AI技术能够实现对遛狗行为的广泛监测,通过构建高精度的目标检测与识别模型,实现对不文明养宠行为的自动识别与预警。

AI监控:智慧社区的“眼睛”
在社区环境中,高清摄像头如同智慧的眼睛,全天候不间断地记录着社区的一举一动。这些摄像头捕捉到的视频数据,通过云计算或边缘计算平台,被实时传输至AI分析系统。利用深度学习算法训练出的目标检测模型,能够准确识别出宠物狗、遛狗者以及宠物粪便等关键元素,进而判断是否存在未牵绳遛狗、随地排便未清理等不文明行为。

边缘端推理:即时响应的秘诀
为了提高响应速度,减少数据传输延迟,AI模型被部署在专用的边缘端推理设备上。这些设备通常安装在社区的关键位置或摄像头附近,能够即时处理摄像头捕捉到的视频流,一旦检测到不文明行为,立即触发预警机制。这种即时反馈机制大大缩短了从问题发现到处理的时间,使得物业人员能够迅速响应,进行现场劝导或清理工作。

中控室与物业联动:高效管理的桥梁
当AI系统检测到不文明养宠行为时,预警信息会立即发送至社区中控室。中控室作为信息枢纽,负责整合各类预警信息,并根据情况紧急程度,通过短信、APP推送等方式,快速通知相关区域的物业人员。物业人员接到预警后,可以立即采取行动,有效劝导养宠者遵守规定,同时清理宠物粪便,确保公共环境的整洁与卫生。

本文正是在这样的思考背景下,想要探索尝试从实验性质的角度出发来开发构建公共生活场景下的遛狗随地排泄行为智能化检测预警系统,在前文中我们已经进行了相应的开发实践,感兴趣的话可以自行移步阅读即可:

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv7全系列【tiny/l/x】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv9全系列【yolov9/t/s/m/c/e-gelan/t/s/m/c/e】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

《AI赋能社区管理:智能监控下的文明养宠新风尚,基于YOLOv12全系列【n/s/m/l/x】参数模型开发构建公共生活场景下遛狗随处拉屎检测预警系统》

本文正是在这样的思考背景下想要从实验性质的角度出发,尝试应用嵌入式端超轻量级的LeYOLO系列的参数模型来开发构建轻量级的检测识别分析系统,首先看下实例效果:

简单看下实例数据:

深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。

一共提供了n、s、m和l四款不同参数量级的模型。

这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体对比分析来看:不难发现五款不同参数量级的模型最终达到了较为相似的结果,没有拉开非常大的差距,这里综合参数量考虑我们最终选定了s系列的模型来作为线上的推理计算模型。

接下来看下s系列模型的详细情况。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

AI技术的应用,不仅提升了社区管理的效率与精准度,更重要的是,它以一种科技化的方式,促进了居民文明养宠意识的提升。随着AI监控系统的普及与成效显现,越来越多的养宠者开始自觉遵守公共规则,共同维护社区的和谐与美丽。此外,社区还可以通过AI数据分析,定期发布文明养宠报告,表彰文明养宠典范,进一步营造积极向上的社区氛围。AI技术的融入,为社区文明养宠管理带来了革命性的变化。它不仅解决了传统管理模式的局限性,更以一种智慧、高效的方式,推动了社区治理现代化进程,让宠物与人类在更加和谐的环境中共享美好生活。未来,随着技术的不断进步,我们有理由相信,智慧社区将展现出更多元、更智能的管理场景,为居民创造更加安全、舒适、文明的居住环境。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值