未名湖边的烦恼
问题描述
每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。
每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
输入格式
两个整数,表示m和n
输出格式
一个整数,表示队伍的排法的方案数。
样例输入
3 2
样例输出
5
数据规模和约定
m,n∈[0,18]
思路:递归
1.我们设立m1,n1来表示剩下的还鞋和借鞋的人数。p为剩余鞋存量,num为队列里的总人数。
2.当p>0时可以借鞋也可以还鞋,当p = 0时只能还鞋不能借鞋。如果p==0且m1==0时,return 0,表示这种情况不算数。
m = int(input())
n = int(input())
def check(num,p,m1,n1):
if num == m+n+1:
return 1
if p >= 1:
if m1 and n1:
return check(num+1,p+1,m1-1,n1) + check(num+1,p-1,m1,n1-1)
elif m1 and not n1:
return check(num + 1, p + 1, m1 - 1, n1)
elif n1 and not m1:
return check(num+1,p-1,m1,n1-1)
elif p == 0:
if m1:
return check(num + 1, p + 1, m1 - 1, n1)
else:
return 0
sum_ = check(1,0,m,n)
print(sum_)