【第12关:二叉树的WPL计算】【编程题实训-树和二叉树】【头歌】【bjfu-304】

任务描述

二叉树的带权路径长度(WPL)是二叉树中所有叶结点的带权路径长度之和。给定一棵二叉树T, 采用二叉链表存储,结点结构为:left weight right,其中叶结点的weight域保存该结点的非负权值。设root为指向T的根结点的指针,请设计求T的WPL的算法。

编程要求

输入
多组数据,每组数据一行,为一个二叉树的先序序列(序列中元素为0时,表示该结点为空,每两个元素之间用空格隔开)。当输入只有一个0时,输入结束。

输出
每组数据输出一行,为该二叉树的WPL。

测试说明

平台会对你编写的代码进行测试:

测试输入:

1 1 0 0 1 0 0
1 2 1 0 0 0 0
0

预期输出:

2
2

C++代码:

304.h

#include<iostream>
using namespace std;
typedef struct BiTNode
{
	int weight;
	struct BiTNode *left,*right;
}BiTNode,*BiTree;


void CreateBiTree(BiTree &T)
{//先序建立二叉树
    int ch;
    cin>>ch;
    if(ch==0) T=NULL;
    else{
    T=new BiTNode;
    T->weight=ch ;
    CreateBiTree(T->left);
    CreateBiTree(T->right);
    }
}
int WPL(BiTree &T,int d)
{//求二叉树T的带权路径长度
 
int wpl = 0;
	if (T != NULL)
	{
		if (T->left == NULL && T->right == NULL)
			wpl += d * T->weight;
		wpl += WPL(T->left, d + 1);
		wpl += WPL(T->right, d + 1);
	}
	return wpl;
}

主函数文件不可编辑:

#include<iostream>
#include "304.h"
using namespace std;

int main()
{
	while(1)
    {
		BiTree T;
		CreateBiTree(T);
		if(!T) break;
		int d=0;          //调用时T指向二叉树的根结点,d为0
		cout<<WPL(T,d)<<endl;
	}
	return 0;
}
1. 一棵二叉树的顺序存储情况如下: 树中,度为2的结点数为( )。 A.1 B.2 C.3 D.4 2. 一棵“完全二叉树”结点数为25,高度为( )。 A.4 B.5 C.6 D.不确定 3.下列说法中,( )是正确的。 A. 二叉树就是度为2的树 B. 二叉树中不存在度大于2的结点 C. 二叉树是有序树 D. 二叉树中每个结点的度均为2 4.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是( )。 A. CABDEFG B. BCDAEFG C. DACEFBG D. ADBCFEG 5.线索二叉树中的线索指的是( )。 A.左孩子 B.遍历 C.指针 D.标志 6. 建立线索二叉树的目的是( )。 A. 方便查找某结点的前驱或后继 B. 方便二叉树的插入与删除 C. 方便查找某结点的双亲 D. 使二叉树的遍历结果唯一 7. 有abc三个结点的右单枝二叉树的顺序存储结构应该用( )示意。 A. a b c B. a b ^ c C. a b ^ ^ c D. a ^ b ^ ^ ^ c 8. 一颗有2046个结点的完全二叉树的第10层上共有( )个结点。 A. 511 B. 512 C. 1023 D. 1024 9. 一棵完全二叉树一定是一棵( )。 A. 平衡二叉树 B. 二叉排序树 C. 堆 D. 哈夫曼树 10.某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( )的二叉树。 A.空或只有一个结点 B.高度等于其结点数 C.任一结点无左孩子 D.任一结点无右孩子 11.一棵二叉树的顺序存储情况如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A B C D E 0 F 0 0 G H 0 0 0 X 结点D的左孩子结点为( )。 A.E B.C C.F D.没有 12.一棵“完全二叉树”结点数为25,高度为( )。 A.4 B.5 C.6 D.不确定 二、填空题(每空3分,共18分)。 1. 树的路径长度:是从树根到每个结点的路径长度之和。对结点数相同的树来说,路径长度最短的是 完全 二叉树。 2. 在有n个叶子结点的哈夫曼树中,总结点数是 2n-1 。 3. 在有n个结点的二叉链表中,值为非空的链域的个数为 n-1 。 4. 某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是 任一结点无左孩子 的二叉树。 5. 深度为 k 的二叉树最多有 个结点,最少有 k 个结点。 三、综合题(共58分)。 1. 假定字符集{a,b,c,d,e,f }中的字符在电码中出现的次数如下: 字符 a b c d e f 频度 9 12 20 23 15 5 构造一棵哈夫曼树(6分),给出每个字符的哈夫曼编码(4分),并计算哈夫曼树的加权路径长度WPL(2分)。 (符合WPL最小的均为哈夫曼树,答案不唯一) 哈夫曼编码: 2. 假设用于通信的电文由字符集{a,b,c,d,e,f,g}中的字符构成,它们在电文中出现的频率分别为{0.31,0.16,0.10,0.08,0.11,0.20,0.04}。要求: (1)为这7个字符设计哈夫曼树(6分)。 (2)据此哈夫曼树设计哈夫曼编码(4分)。 (3)假设电文的长度为100字符,使用哈夫曼编码比使用3位二进制数等长编码使电文总长压缩多少?(4分) (1) 为这7个字符设计哈夫曼树为(符合WPL最小的均为哈夫曼树,答案不唯一): (2) 哈夫曼编码为: a:01;b:001;c:100;d:0001;e:101;f:11;g:0000 (3) 假设电文的长度为100字符,使用哈夫曼编码比使用3位二进制数等长编码使电文总长压缩多少? 采用等长码,100个字符需要300位二进制数,采用哈夫曼编码发送这100个字符需要261二进制位,压缩了300-261=39个字符。压缩比为39/300=13%。 3. 二叉数T的(双亲到孩子的)边集为: { <A,B>, <A,C>, <D,A>, <D,E>, <E,F>, <F,G> } 请回答下列问题: (1)T的根结点(2分): (2)T的叶结点(2分): (3)T的深度(2分): (4)如果上述列出边集中,某个结点只有一个孩子时,均为其左孩子;某个结点有两个孩子时,则先列出了连接左孩子的边后列出了连接右孩子的边。画出该二叉树其及前序线索(6分)。 (1)T的根结点 (2)T的叶结点 : (3)T的深度 : (4)该二叉树其及前序线索为: 4.现有以下按前序和中序遍历二叉树的结果: 前序:ABCEDFGHI 中序:CEBGFHDAI 画出该二叉树的逻辑结构图(5分),并在图中加入中序线索(5分)。 5.有电文:ABCDBCDCBDDBACBCCFCDBBBEBB。 用Huffman树构造电文中每一字符的最优通讯编码。画出构造的哈夫曼树,并给出每个字符的哈夫曼编码方案。(符合WPL最小的均为哈夫曼树,答案不唯一) (1)构造哈夫曼树(6分): (2)哈夫曼编码方案(4分):
### 于哈夫曼树数据压缩算法编程题目与实训内容 #### 哈夫曼树简介 哈夫曼树是一种用于实现最优前缀码编码方案的二叉树结构。它通过最小化加权路径长度来优化数据存储效率,广泛应用于文件压缩领域[^1]。 #### 编程题目描述 以下是基于哈夫曼树的数据压缩算法的一个典型编程题目: **题目名称**: 实现基于哈夫曼树的数据压缩与解压 **目标**: 构建一个程序,能够完成以下功能: 1. 给定一段字符串输入,统计其中各字符出现的频率。 2. 使用这些频率构建一棵哈夫曼树。 3. 利用该哈夫曼树生成对应的哈夫曼编码表。 4. 对原始字符串进行编码并输出压缩后的比特流表示形式。 5. 提供解压功能,验证压缩和解压的一致性。 **提示**: 可以采用优先队列辅助构建哈夫曼树的过程,具体逻辑如下所示: ```python import heapq from collections import defaultdict, namedtuple class HuffmanNode(namedtuple("HuffmanNode", ['char', 'freq', 'left', 'right'])): def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(frequency_map): priority_queue = [] for char, freq in frequency_map.items(): node = HuffmanNode(char=char, freq=freq, left=None, right=None) heapq.heappush(priority_queue, node) while len(priority_queue) > 1: left_node = heapq.heappop(priority_queue) right_node = heapq.heappop(priority_queue) merged_freq = left_node.freq + right_node.freq internal_node = HuffmanNode( char=None, freq=merged_freq, left=left_node, right=right_node ) heapq.heappush(priority_queue, internal_node) return priority_queue[0] def generate_codes(node, prefix="", code_table={}): if node is not None: if node.char is not None: code_table[node.char] = prefix generate_codes(node.left, prefix + "0", code_table) generate_codes(node.right, prefix + "1", code_table) return code_table # 测试函数 if __name__ == "__main__": input_string = "this is an example of a huffman tree" frequency_map = defaultdict(int) for char in input_string: frequency_map[char] += 1 root = build_huffman_tree(frequency_map) codes = generate_codes(root) print(codes) ``` 上述代码实现了从给定字符串到哈夫曼树及其对应编码表的核心过程。 #### 训练建议 为了更好地掌握哈夫曼树的应用场景和技术细节,可以尝试以下扩展练习: - **动态调整**: 设计一种机制,在运行过程中实时更新字符频次分布,并重新计算最佳编码方式。 - **性能评估**: 针对不同类型的文本(如英文文章、源代码片段),分析其压缩率差异以及时间复杂度表现。 - **错误处理**: 考虑当输入为空或其他特殊情况下的鲁棒性设计。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤米尼克

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值