【概率论】1-2:计数方法(Counting Methods)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/TonyShengTan/article/details/82813906

title: 【概率论】1-2:计数方法(Counting Methods)
categories:

  • Mathematic
  • Probability
    keywords:
  • Counting Methods
  • 技术方法
  • Combinatorial Methods
  • 组合方法
  • Multiplication
  • 乘法法则
  • Permutations
  • 排列
  • Stirling’s Formula
  • 斯特林公式
    toc: true
    date: 2018-01-25 10:35:46


Abstract: 本文主要介绍有限样本空间下的古典概率问题,以及其中包含的计数方法,排列的基本思想
Keywords: Counting Methods,Combinatorial Methods,Multiplication,Permutations,Stirling’s Formula

开篇废话

其实有时候天天写博客没有什么废话可以说了,因为前一天说的已经差不多了,但是废话这个传统不能断,因为一旦断了,就没办法接上了。
最近这几篇博客感觉每一篇知识点都有点多,概率这个东西更讲究应用,所以决定本文分成两篇写,这两篇只讲原理下后面讲案例,这样对比这看可能更好,一般的教材的通用做法是讲一个知识点,然后给出丰富的例子让我们来理解知识点,但是这样知识点之间衔接就被例题打断了,而先讲理论再来例题,理论又容易记不住,所以这是个两难的选择,但是我还是更倾向于先把理论用通俗的话讲明白,然后再举例子,这样我会感觉到踏实一点,也能检验自己理论是否真的搞明白了。
另外我对碎片化的学习表示非常反对,所谓任务导向的学习,什么不会学什么,这样做的好处是多快好省,这是我们dang经济建设的口号,“这个口号本身很矛盾,多就不能快,好就不能省,一分钟洗一万个土豆,你敢吃么?给我一千块钱盖房子,我只能用纸壳报纸给你盖”(语出自袁腾飞老师),多快好省的问题就在于许多问题不会很快暴露,但是会陆陆续续的一直干扰你。
本文中的部分内容高中就有涉及,所以这篇博客写的关键字有点多,这里只强调与后续概率相关的知识,如果有遗漏大家可以自己补习。

Finite Sample Space(有限样本空间)

我们书接上回,上回书我们说到试验的所有输出组成的集合,我们称之为样本空间,当样本空间中的样本点的个数是有限的时候,我们就称之为有限样本空间,那么我们的问题来了,如果我们已知试验的条件,怎么确定结果是否有限个,如果是有限个,那么怎么确定个数呢?也就是怎么数一下结果呢?于是就有了下面的一些列计数方法。

Classical Interpretation

以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-1-2-Counting-Methods转载请标明出处

没有更多推荐了,返回首页