给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,1] 输出: 1
示例 2:
输入: [4,1,2,1,2] 输出: 4
看起来这个题目不是很难:
只有一个出现一次,其他元素均出现两次,那么数组长度肯定是奇数,只要先排序在两两比较就可以找到出现一次的数字了。
但是题目提出了要求:你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
这个要求就增加了难度,似乎进入了死胡同。这时候就要想到一些黑魔法,例如异或。
异或(^)【同0异1】
运算规则:0^0=0;0^1=1;1^0=1;1^1=0;
用途:
(1)使特定位翻转,异或上 一个要翻转位数为1,其余位为0的数值即可。
例:设x=11101100,将x的低四位翻转。令x^00001111=11100011
(2)与0异或,保留原值。
(3)基于异或运算,不引用新变量,交换两个变量的值
可以发现相同的数字进行异或那么得到的值为0,任何数字同0异或得到的都是其本身。
所以这道题用异或就可以了。
func singleNumber(nums []int) int {
//异或,相同的数字异或是0
//任何数字同0异或结果都是本身
num := 0
for i:=0; i<len(nums); i++ {
num=num^nums[i]
}
return num
}