- 博客(2)
- 收藏
- 关注
原创 Miller-Rabin的运用和个人理解
Miller-Rabin的运用和个人理解 通过运用费马小定理:对于素数n,有a使得gcd(a,n)=1 即a与n互素,则有(mod n)。 可以知道,对于素数n,当a在区间 [ 2 , n-1 ] 上时,总有(mod n)成立。 但是对于费马小定理其逆命题是不成立的,即不能由(mod n)推出 n 为素数 特别的,我们把使得(mod n)成立,但是 n 不为素数的数称为伪素数。 例如:341= 11*31,明显 341 不为素数,但是(mod 341)是成立的 伪素数在不同底数a下的...
2021-01-11 19:17:32 312
原创 【模拟试题】生日蛋糕
【模拟试题】生日蛋糕Description 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。 设从下往上数第i(1<=i<=M)层蛋糕是半径为R[i], 高度为Hi的圆柱。当i < M时,要求 R[i]>R[i+1]且H[i]>H[i+1]。 由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一...
2018-03-17 12:41:49 1203
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人