1014. 最佳观光组合
给定正整数数组 A
,A[i]
表示第 i
个观光景点的评分,并且两个景点 i
和 j
之间的距离为 j - i
。
一对景点(i < j
)组成的观光组合的得分为(A[i] + A[j] + i - j
):景点的评分之和减去它们两者之间的距离。
返回一对观光景点能取得的最高分。
示例:
输入:[8,1,5,2,6]
输出:11
解释:i = 0, j = 2, A[i] + A[j] + i - j = 8 + 5 + 0 - 2 = 11
提示:
2 <= A.length <= 50000
1 <= A[i] <= 100
看题的第一眼,数组长度不算长,暴力应该可以A。所以先试试暴力:
class Solution {
public int maxScoreSightseeingPair(int[] A) {
int ans = 0;
for(int i = 0 ; i < A.length ; i++)
{
for(int j = i+1 ; j < A.length ; j++)
{
if((A[i]+A[j]+i-j)>ans)
ans = (A[i]+A[j]+i-j);
}
}
return ans;
}
}
好嘛,超时间了。。。。这么点数据都超时间。。。再想办法。感觉又是动态规划。头疼。
看公式A[i] + A[j] + i - j
,貌似对于任意一个位置他的值减去或加上它的索引的值都是固定的 。最高分就等于max(A[i]+ i)+max(A[j] - j)
,且 i 要小于 j 。这样从前往后遍历数组,每次更新一下当前位置两部分的最大值最后求一下和应该就可以了。来试试。
class Solution {
public int maxScoreSightseeingPair(int[] A) {
int max1 = A[0]+0;//当前 i 位置
int max2 = A[1]-1;//当前 j 位置
int tempmax1 = A[0]+0;// j 位置没更新前 存储i所有可能值对应的A[i]+[i]最大值
for(int j = 2 ; j < A.length ; j++)
{
if (A[j-1]+j-1 >= tempmax1)
tempmax1 = A[j-1]+j-1; //每次更新A[i]+[i]可能的最大值
//第一种更新j位置的情况
if(max2 <= A[j]-j)
{
max2 = A[j]-j;
max1 = tempmax1;
}
//第二种更新j位置的情况
else
{
if((A[j]-j + tempmax1) >= (max1 + max2))
{
max1 = tempmax1;
max2 = A[j]-j;
}
}
}
return max1 + max2;
}
}
找了N多BUG后终于A了····再次证明我就是个菜鸡。
思路就是从前往后遍历一次数组,在当前位置是否要更新 j 的位置(有两种情况)。如果更新,相应的 i 可能的取值也就变多,也需要更新。最后两部分求一下和就完事了。