1014. 最佳观光组合

1014. 最佳观光组合

给定正整数数组 AA[i] 表示第 i 个观光景点的评分,并且两个景点 ij 之间的距离为 j - i

一对景点(i < j)组成的观光组合的得分为(A[i] + A[j] + i - j):景点的评分之和减去它们两者之间的距离。

返回一对观光景点能取得的最高分。

示例:

输入:[8,1,5,2,6]
输出:11
解释:i = 0, j = 2, A[i] + A[j] + i - j = 8 + 5 + 0 - 2 = 11

提示:

  1. 2 <= A.length <= 50000
  2. 1 <= A[i] <= 100

看题的第一眼,数组长度不算长,暴力应该可以A。所以先试试暴力:

class Solution {
    public int maxScoreSightseeingPair(int[] A) {
        int ans = 0;
        for(int i = 0 ; i < A.length ; i++)
        {
            for(int j = i+1 ; j < A.length ; j++)
            {
                if((A[i]+A[j]+i-j)>ans)
                    ans = (A[i]+A[j]+i-j);
            }
        }
        return ans;
    }
}

好嘛,超时间了。。。。这么点数据都超时间。。。再想办法。感觉又是动态规划。头疼。

看公式A[i] + A[j] + i - j,貌似对于任意一个位置他的值减去或加上它的索引的值都是固定的 。最高分就等于max(A[i]+ i)+max(A[j] - j),且 i 要小于 j 。这样从前往后遍历数组,每次更新一下当前位置两部分的最大值最后求一下和应该就可以了。来试试。

class Solution {
    public int maxScoreSightseeingPair(int[] A) {
        int max1 = A[0]+0;//当前 i 位置
        int max2 = A[1]-1;//当前 j 位置
        int tempmax1 = A[0]+0;// j 位置没更新前 存储i所有可能值对应的A[i]+[i]最大值
        for(int j = 2 ; j < A.length ; j++)
        {
        	if (A[j-1]+j-1 >= tempmax1)
        		tempmax1 = A[j-1]+j-1; //每次更新A[i]+[i]可能的最大值
            
           	//第一种更新j位置的情况
            if(max2 <= A[j]-j)
            {
                max2 = A[j]-j;
                max1 = tempmax1;
            }
            //第二种更新j位置的情况
            else
            {
                if((A[j]-j + tempmax1) >= (max1 + max2))
                {
                    max1 = tempmax1;
                    max2 = A[j]-j;
                }
            }
        }
        return max1 + max2;
    }
}

找了N多BUG后终于A了····再次证明我就是个菜鸡。

思路就是从前往后遍历一次数组,在当前位置是否要更新 j 的位置(有两种情况)。如果更新,相应的 i 可能的取值也就变多,也需要更新。最后两部分求一下和就完事了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值