洛谷题单【算法2-3】分治

P1115 最大子段和

思路

dp

实现

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n[200001],p,ans[200001]={0};
    int sum=-9999999;
    cin>>p;
    for(int i=1;i<=p;i++)
    {
        cin>>n[i];
        ans[i]=max(ans[i-1]+n[i],n[i]);
        sum=max(sum,ans[i]);
    }
    cout<<sum;
    return 0;
}

P1908 逆序对

思路

用归并排序,每次合并时统计逆序对数

实现

来自题解区

#include<bits/stdc++.h>
using namespace std;
int n,a[500010],c[500010];
long long ans;
void msort(int b,int e)
{
    if(b==e)  
		return;
    int mid=(b+e)/2,i=b,j=mid+1,k=b;
    msort(b,mid),msort(mid+1,e);
    while(i<=mid&&j<=e)
    {
    	if(a[i]<=a[j]) 
    		c[k++]=a[i++];  //c数组辅助归并排序
    	else  //左边比右边大,产生逆序对
    		c[k++]=a[j++],ans+=mid-i+1;
    }
    while(i<=mid)  //如果左边没有放完就把左边区间所有剩下的数放进去
    	c[k++]=a[i++];
    while(j<=e)    //右边同理
    	c[k++]=a[j++];
    for(int l=b;l<=e;l++)  //更新a
    	a[l]=c[l];
} 

int main()
{
    scanf("%d",&n); 
    for(int i=1;i<=n;i++)
    	scanf("%d",&a[i]);
    msort(1,n);
    printf("%lld",ans);
    return 0;
}

P1228 地毯填补问题

思路

来自洛谷题解区 夜刀神十香ღ

n = 2时,无论公主在哪个格子,我们都可以用一块毯子填满
继续考虑n = 4的情况
我们已经知道了解决2 * 2的格子中有一个障碍的情况如何解决,因此我们可以尝试构造这种情况
首先,显然可以将4 * 4的盘面划分成4个2 * 2的小盘面,其中一块已经存在一个障碍了
而我们只需在正中间的2 * 2方格中放入一块地毯,就可以使所有小盘面都有一个障碍
于是,n = 4的情况就解决了
我们可以将n = 4时的解法可以推广到一般情况,既当n = 2 k时,我们均可以将问题划分为4个n = 2 k – 1的子问题,然后分治解决即可。

实现

#include<bits/stdc++.h>
typedef long long ll;
ll x,y,len; int k;
void solve(ll x,ll y,ll a,ll b,ll l)
{
    if(l==1) return;
    if(x-a<=l/2-1 && y-b<=l/2-1)
    {
        printf("%lld %lld 1\n",a+l/2,b+l/2);
        solve(x,y,a,b,l/2);
        solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
        solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
        solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
    }
    else if(x-a<=l/2-1 && y-b>l/2-1)
    {
        printf("%lld %lld 2\n",a+l/2,b+l/2-1);
        solve(a+l/2-1,b+l/2-1,a,b,l/2);
        solve(x,y,a,b+l/2,l/2);
        solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
        solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
    }
    else if(x-a>l/2-1 && y-b<=l/2-1)
    {
        printf("%lld %lld 3\n",a+l/2-1,b+l/2);
        solve(a+l/2-1,b+l/2-1,a,b,l/2);
        solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
        solve(x,y,a+l/2,b,l/2);
        solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
    }
    else
    {
        printf("%lld %lld 4\n",a+l/2-1,b+l/2-1);
        solve(a+l/2-1,b+l/2-1,a,b,l/2);
        solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
        solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
        solve(x,y,a+l/2,b+l/2,l/2);
    }
}
int main()
{
    scanf("%d %lld %lld",&k,&x,&y);
    len = pow(2,k);
    solve(x,y,1,1,len);
    return 0;
}

欢迎指正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值