P1115 最大子段和
思路
dp
实现
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n[200001],p,ans[200001]={0};
int sum=-9999999;
cin>>p;
for(int i=1;i<=p;i++)
{
cin>>n[i];
ans[i]=max(ans[i-1]+n[i],n[i]);
sum=max(sum,ans[i]);
}
cout<<sum;
return 0;
}
P1908 逆序对
思路
用归并排序,每次合并时统计逆序对数
实现
来自题解区
#include<bits/stdc++.h>
using namespace std;
int n,a[500010],c[500010];
long long ans;
void msort(int b,int e)
{
if(b==e)
return;
int mid=(b+e)/2,i=b,j=mid+1,k=b;
msort(b,mid),msort(mid+1,e);
while(i<=mid&&j<=e)
{
if(a[i]<=a[j])
c[k++]=a[i++]; //c数组辅助归并排序
else //左边比右边大,产生逆序对
c[k++]=a[j++],ans+=mid-i+1;
}
while(i<=mid) //如果左边没有放完就把左边区间所有剩下的数放进去
c[k++]=a[i++];
while(j<=e) //右边同理
c[k++]=a[j++];
for(int l=b;l<=e;l++) //更新a
a[l]=c[l];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
msort(1,n);
printf("%lld",ans);
return 0;
}
P1228 地毯填补问题
思路
来自洛谷题解区 夜刀神十香ღ
n = 2时,无论公主在哪个格子,我们都可以用一块毯子填满
继续考虑n = 4的情况
我们已经知道了解决2 * 2的格子中有一个障碍的情况如何解决,因此我们可以尝试构造这种情况
首先,显然可以将4 * 4的盘面划分成4个2 * 2的小盘面,其中一块已经存在一个障碍了
而我们只需在正中间的2 * 2方格中放入一块地毯,就可以使所有小盘面都有一个障碍
于是,n = 4的情况就解决了
我们可以将n = 4时的解法可以推广到一般情况,既当n = 2 k时,我们均可以将问题划分为4个n = 2 k – 1的子问题,然后分治解决即可。
实现
#include<bits/stdc++.h>
typedef long long ll;
ll x,y,len; int k;
void solve(ll x,ll y,ll a,ll b,ll l)
{
if(l==1) return;
if(x-a<=l/2-1 && y-b<=l/2-1)
{
printf("%lld %lld 1\n",a+l/2,b+l/2);
solve(x,y,a,b,l/2);
solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
}
else if(x-a<=l/2-1 && y-b>l/2-1)
{
printf("%lld %lld 2\n",a+l/2,b+l/2-1);
solve(a+l/2-1,b+l/2-1,a,b,l/2);
solve(x,y,a,b+l/2,l/2);
solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
}
else if(x-a>l/2-1 && y-b<=l/2-1)
{
printf("%lld %lld 3\n",a+l/2-1,b+l/2);
solve(a+l/2-1,b+l/2-1,a,b,l/2);
solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
solve(x,y,a+l/2,b,l/2);
solve(a+l/2,b+l/2,a+l/2,b+l/2,l/2);
}
else
{
printf("%lld %lld 4\n",a+l/2-1,b+l/2-1);
solve(a+l/2-1,b+l/2-1,a,b,l/2);
solve(a+l/2-1,b+l/2,a,b+l/2,l/2);
solve(a+l/2,b+l/2-1,a+l/2,b,l/2);
solve(x,y,a+l/2,b+l/2,l/2);
}
}
int main()
{
scanf("%d %lld %lld",&k,&x,&y);
len = pow(2,k);
solve(x,y,1,1,len);
return 0;
}
欢迎指正