海龟策略深入研究-策略回测系列-12 品种选择检验(五)

19 篇文章 4 订阅

3)3年回望周期测试

选择标准:回归夏普比率>0.4

a.2014-2016测试


对初步筛选出来的样本进行2014-2016年回测,选择回归夏普比率>0.4的品种,然后构成组合,如图所示。

enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here

 

根据回归夏普比率>0.4的准则,筛选出了17个品种,其历史表现和2017年预测表现如图6-31所示。投资组合在2014-2016年年化收益73.7%,百分比最大回撤-22.99%,夏普比率达2.48,资金曲线平滑且整体向上,但是2017年预测表现不佳,资金曲线不断上下震荡,夏普比率仅仅是-0.23。

enter image description here

 

 

b.2015-2017测试


2015-2017年回测是最后一轮策略,选择回归夏普比率>0.4的品种,然后构成最终的海龟组合,如图所示。

enter image description here
enter image description here
enter image description here
enter image description here
enter image description here

 
根据回归夏普比率>0.4的准则,筛选出了14个品种,其历史表现和2018年预测表现如图6-33所示。投资组合在2015-2017年年化收益62.2%,百分比最大回撤-23.21%,夏普比率达1.82;但是2017年震荡向上,夏普比率达0.59,故2018年是盈利的;全时间区间的夏普比率为1.42。
enter image description here

 
 
若把筛选标准改成回归夏普比率>0.6后,投资组合的品种数量降低到12个,其其历史表现和2018年预测表现如图6-34所示。投资组合在2015-2017年年化收益63.36%,百分比最大回撤-20.78%,夏普比率达1.81; 2018年预测表现是先发生回撤然后行情走好,夏普比率达0.59;全时间区间的夏普比率为1.5。
enter image description here
 
 
若把筛选标准改成回归夏普比率>0.8后,投资组合的品种数量降低到9个,其其历史表现和2018年预测表现如图6-35所示。投资组合在2015-2017年年化收益63.85%,百分比最大回撤-24.24%,夏普比率达1.84; 2018年预测表现是先发生回撤然后行情走好,夏普比率达0.57;全时间区间的夏普比率为1.52。
enter image description here
 
 

4)4年回望周期测试


选择标准是回归夏普比率>0.4,对初步筛选出来的样本进行2014-2017年回测,然后一步到位构成组合,如图所示。
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here
enter image description here

 

根据回归夏普比率>0.4的准则,筛选出了15个品种,其历史表现和2017年预测表现如图6-37所示。投资组合在2015-2017年年化收益57.2%,百分比最大回撤-22.61%,夏普比率达1.82;但是2018年资金曲线上下震荡,夏普比率仅仅是0.38;全时间区间的夏普比率为1.61。

enter image description here
 
 

根据回归夏普比率>0.6的准则,剔除了鸡蛋这个品种,其历史表现和2017年预测表现如图6-38所示。投资组合在2015-2017年年化收益57.2%,百分比最大回撤-22.61%,夏普比率达1.67;但是2018年夏普比率是0.33;全时间区间的夏普比率为1.49。
enter image description here
 
 

根据回归夏普比率>0.8的准则,剔除了一号棉花这个品种,其历史表现和2017年预测表现如图6-39所示。投资组合在2015-2017年年化收益58.68%,百分比最大回撤-38.46%,夏普比率达1.48;但是2018年夏普比率是-0.12;全时间区间的夏普比率为1.28。

enter image description here
 
 

根据回归夏普比率>1.0的准则,剔除的品种包括:沪深300股指、铜、铅,其历史表现和2018年预测表现如图6-40所示。投资组合在2015-2017年年化收益53.4%,百分比最大回撤-28.38%,夏普比率达1.37; 2018年夏普比率是0.43;全时间区间的夏普比率为1.19。

enter image description here
 
 

5)多种回望周期回测总结


在上面的测试中,尝试了通过不同的回望周期(如2年、3年、4年)和不同的筛选标准得到了10个备选的海龟组合,下面仅仅以2018年预测效果和全时间区间的夏普比率构建备选表格,如图所示。从该表格可以看出,整体表现最好的是回望周期为3年,筛选标准是回归夏普比率>0.6的组合,故以该投资组合成为最终的海龟组合,用于其他关键要素的验证,比如单位头寸限制,长短周期出入场信号,上一笔盈利过滤等等。
enter image description here

海龟策略是一种基于技术分析的交易策略,它通过追随市场趋势进行交易,具有较强的适应性和风险控制能力。在Python中,可以使用多种工具和库来实现完整的海龟策略。 首先,我们需要使用Python中的数据获取库,如pandas_datareader,来获取股票或期货的历史行情数据。通过这些数据,我们可以分析和判断市场的趋势。 接下来,我们可以使用技术分析库,如TA-Lib,来计算一些常用的技术指标,如移动平均线、布林带等。这些指标可以帮助我们识别市场的趋势和价格的超买超卖情况。 然后,我们可以根据海龟策略的规则来制定交易规则。海龟策略的核心是根据市场的趋势进行买入和卖出操作。具体的规则包括,当价格穿越移动平均线向上时,买入;当价格穿越移动平均线向下时,卖出。此外,还可以设置止损和止盈的条件来控制风险。 最后,我们需要编写一个回测框架来模拟和评估海龟策略的表现。回测框架可以记录每次交易的详细信息,包括交易的时间、价格、交易量等。通过回测框架,我们可以评估策略的盈亏情况、胜率和风险回报比等指标,进而对策略进行优化和调整。 总结起来,Python中实现完整的海龟策略主要包括数据获取、技术分析、交易规则制定和回测框架等几个步骤。通过使用Python的相关库和工具,我们可以实现一个简单但有效的海龟策略,并进行策略回测和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值