[机器学习] 第八章 集成学习 2.偏差与方差之间的权衡

本文探讨了机器学习中偏差、方差与误差的关系,解释了偏差-方差窘境,强调了如何通过K折交叉验证、bagging和boosting来平衡它们。偏差表示模型精准度,方差表示模型稳定性。减小偏差可通过增加特征,减小方差可通过增大数据集或使用正则化方法。
摘要由CSDN通过智能技术生成

参考:https://www.zhihu.com/question/27068705

方差,偏差 与 误差的关系

任何机器学习算法的预测误差可以分解为三部分,即:偏差误差+方差误差+不可约的误差(对于给定的模型,我们不能进一步减少的误差)。
评价一个模型的好坏还要引入奥卡姆剃刀原则(Occam’s Razor) ,这个原则是说能用简单的方法完成任务的就尽量不要复杂,在这里就是能用简单的模型去拟合就不用复杂的方法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值