参考:深度学习正则化-参数范数惩罚(L1,L2范数)_wangheng673的博客-CSDN博客 参考:贝叶斯角度看 L1 & L2 正则化 | Wei's Blog 目录 一、L0范数正则化(惩罚):非0的参数个数控制在c以内 1.1 L0范数 二、L1范数正则化:参数绝对值和控制在c内(参数稀疏性惩罚) 2.1 L1范数 2.2 🍇 Lasso Regression (Lasso回归) 2.3 几何解释 三、L2范数正则化:参数平方和 3.1 L2范数 3.2 🍇 Ridge Regression (岭回归) 3.3 几何解释 为什么L1会产生稀疏性? 总览