[机器学习] 第一章 绪论 2.L0、L1、L2 范数正则化

本文详细介绍了机器学习中的L0、L1、L2范数正则化,重点讨论了L0范数限制参数个数,L1范数实现参数稀疏性,以及L2范数的权重衰减作用。通过Lasso Regression和Ridge Regression的对比,解释了L1正则化如何产生稀疏性,并探讨了正则化的几何解释。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值