[算法导论] 111.二叉树的最小深度

本文介绍了如何使用递归算法求解二叉树的最小深度,时间复杂度为O(n),空间复杂度为O(height),其中n表示树的节点数,height表示树的高度。递归过程中,会遍历每个节点并检查其子树深度。
摘要由CSDN通过智能技术生成

0. 题目 

 

 

1. 递归 o(n) o(height)

时间复杂度 树的每个节点都要遍历,因为对于每个节点的深度,都要遍历左右子树,得到左右节点的深度。

空间复杂度 栈的深度。

# 最小深度:节点个数。
class Solution:
    def minDepth(self, root):
        # 注意:如果5个结点是在一边,那就是5,而不是1。
        if not root:    return 0
        if not root.left:  #左子树不存在
            return self.minDepth(root.right)+1 #右子树深度+1
        if not root.right: #右子树不存在
            return self.minDepth(root.left)+1  #左子树深度+1
        return min(self.minDepth(root.left),self.minDepth(root.right))+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值