CaTGrasp: 从模拟中 学习 混乱场景下 “类级别"的任务相关抓取
CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation
一、摘要
摘要: 任务相关抓取对工业生产至关重要集合,下游操作任务受限有效抓取的集合。学习如何完成这项任务,然而,具有挑战性,因为任务相关的抓取标签难以定义和注释。目前还没有达成共识
关于建模或现成工具的正确表示执行任务相关的掌握。这项工作提出了一个工业对象任务相关抓取学习框架不需要花时间收集真实世界的数据或人工注释。为了实现这一点,整个框架是否只接受模拟训练,包括监督培训具有合成标签生成和自我监督,手动对象交互。本文就是在这个框架的背景下,展开的提出了一个新颖的、以对象为中心的规范表示类别级别,允许建立密集通信跨对象实例并传递与任务相关的掌握新实例。大量与任务相关的实验对密集杂乱的工业物体进行抓取在模拟和现实世界的设置,演示建议架构的有效性。代码和数据是可以在https://sites.google.com/view/catgrasp。
二、介绍
机器人的操作通常需要 识别 一个与下游任务相匹配的合适的 抓取点。工业装配是一个重要的应用领域,机器人抓取物体[1]、[2]后需要进行约束放置。在这种情况下,一个合适的抓取要求在物体抓取和运输过程中 保持稳定&#