[论文笔记] The Chosen One: Consistent Characters in Text-to-Image Diffusion Models 在文生图扩散模型中保持特征

该论文提出了一种全自动的迭代方法,用于在文本到图像生成中保持角色的一致性,特别是在故事可视化和游戏开发等场景下。通过预训练的特征提取器和聚类分析,实现了角色身份的提炼和迭代优化,从而在保持文本提示对齐的同时增强角色一致性。评估和应用部分证明了方法的有效性,但也指出了一些局限性,如计算成本高和可能的不完全一致性。
摘要由CSDN通过智能技术生成

https://arxiv.org/pdf/2311.10093.pdf

目标

  • 生成与文本描述一致的角色图像,并在不同上下文中保持角色的一致性

关键问题

  • 现有的文本到图像生成模型难以生成具有一致性的角色图像,这对于多种应用场景(如故事可视化、游戏开发等)至关重要。

方法

  • 提出了一个全自动的迭代过程,不需要目标角色的预存图像。
  • 使用预训练的特征提取器将生成的图像嵌入到语义空间中,并进行聚类。
  • 通过选择最内聚的群集并对其进行身份
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值