关于卷积操作(Convolution)的理解(参数量和运算量计算),以及网络轻量化(MobileNet Inspired Depthwise Separable Conv深度可分离卷积)

本文介绍了深度可分离卷积(DSC)如何实现网络轻量化,以MobileNet为例,探讨了DSC相对于普通卷积在参数量和运算量上的优势。通过将卷积拆分为depthwise和pointwise两步,DSC能有效减少参数数量,降低计算复杂度,适合应用于资源有限的移动设备。
摘要由CSDN通过智能技术生成

深度学习,尤其是深度卷积网络的迅猛发展,使得其在存储和算力奢侈的GPU(多GPU)上的部属趋于成熟。然而,将基于深度CNN的方法有效移植到存储和算力有限的移动设备端(手机、Pad、嵌入式设备等)面临诸多挑战。

核心挑战就是如何降低CNN对memory(存储)FLOPS(算力)的要求,但又保持CNN的性能(相比于其在GPU端的原貌)没有显著衰减。为解决这一核心挑战,我们就需要研究网络轻量化,具体说就是通过设计新的网络结构(archeticture)以及网络中不淑的卷积操作(Conv Ops),以实现 1. 减少网络参数量;2. 降低网络运算过程中的FLOPs。

关于轻量化网络的设计,八仙过海。这里希望和大家分享我对Google开发的MobileNet(V1-V3)系列网络的宏观感受。个人水平有限,也没有深入实现过MobileNet的各个版本,因此此处仅站在广义CNN设计的角度汇报一下。

MobileNet的杀手锏,是深度可分离卷积(Depthwise Separable Convolution)

For breviety,此博客把Depthwise Separable Conv简称为DSC。

要理解DSC,我们先回溯普通卷积。

--------

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值