【题解】ATCoder_abc123_D - Cake 123

文章讲述了在一个给定美味度的蛋糕问题中,如何通过优化暴力枚举策略,使用优先队列和下标组合去重,找出三种蛋糕购买组合,按照美味度总和降序排列的前K种方法。
摘要由CSDN通过智能技术生成

Link: D - Cake 123

Description:

现有3种蛋糕,每个蛋糕都有一个称为美味度的整数值,如下所示:

  • 第一种蛋糕的美味度是 A_1,A_2,\cdot \cdot \cdot ,A_X
  • 第二种蛋糕的美味度是 B_1,B_2,\cdot \cdot \cdot ,B_Y
  • 第三种蛋糕的美味度是 C_1,C_2,\cdot \cdot \cdot ,C_Z

现要求买三个蛋糕,每种蛋糕各一个,显然共有X\times Y\times Z种方法,对其按照美味度总和降序排列。输出前 K 种方法的蛋糕美味度总和。

Constraints:

  • 1 \leq X,Y,Z \leq 1000
  • 1 \leq K \leq min(3000,X\times Y\times Z)
  • 1\leq A_i,B_i,C_i \leq 10^{10}

Analysis_1: 

  • 无脑暴力枚举后排序,显然复杂度O(NlogN),N=X\times Y\times Z爆爆爆!,故考虑如何优化。分析数据规模,注意到K的范围最大才 3000,故可以尝试枚举前两种蛋糕的所有组合,取前 K 种,再用这 K 种进一步和第三种蛋糕去组合,再取前 K 种即可。
  • O(K^2logK)

Sulution_1:

vector<ll> a,b,c;

int main() {
	int x,y,z,K; 
	cin >> x >> y >> z >> K;
	for(int i=0;i<x;i++) {
		ll t; cin >> t;
		a.push_back(t);
	}
	for(int i=0;i<y;i++) {
		ll t; cin >> t;
		b.push_back(t);
	}
	for(int i=0;i<z;i++) {
		ll t; cin >> t;
		c.push_back(t);
	}
	//处理前两种组合
	vector<ll> ab;
	for(int i=0;i<x;i++) {
		for(int j=0;j<y;j++) {
			ab.push_back(a[i]+b[j]);
		}
	}
	sort(ab.begin(),ab.end(),greater<ll>());
    // 取前K种和第三种组合,注意前两种若不够K,要取min
	vector<ll> ans;
	for(int i=0;i<min(K,x*y);i++) {
		for(int j=0;j<z;j++) {
			ans.push_back(ab[i]+c[j]);
		}
	}
	sort(ans.begin(),ans.end(),greater<ll>());
	for(int i=0;i<K;i++) cout << ans[i] << endl;
	return 0;
}

Analysis_2: 

  • 如果把每种蛋糕分别排序呢?每次按美味度最大的依次取出,可以保证一定在前 K 种,但不一定是严格降序的,故对这些满足条件的再做一次排序即可。
  • O(Klog^3K)

Solution_2:


ll a[1005],b[1005],c[1005];

int main() {
	int x,y,z,K; 
	cin >> x >> y >> z >> K;
	for(int i=0;i<x;i++) cin >> a[i];
	for(int i=0;i<y;i++) cin >> b[i];
	for(int i=0;i<z;i++) cin >> c[i];
	sort(a,a+x,greater<ll>());
	sort(b,b+y,greater<ll>());
	sort(c,c+z,greater<ll>());
	
	vector<ll> ans;
	for(int i=0;i<x;i++) {
		for(int j=0;j<y;j++) {
			for(int k=0;k<z;k++) {
                //按照序号依次取
				if((i+1)*(j+1)*(k+1) <= K) ans.push_back(a[i]+b[j]+c[k]);
			}
		}
	}
	sort(ans.begin(),ans.end(),greater<ll>());
	for(int i=0;i<K;i++) cout << ans[i] << endl;
	return 0;
}

Analysis_3: 

  • 顺着上面的思路,(分别排好序后)和最大的肯定是 A_1+B_1+C_1,次大的一定是 A_2+B_1+C_1, A_1+B_2+C_1,A_1+B_1+C_2三者其一,即只将一个最大值改为次大值,以此类推,每次都面临相同的选择,故我们要动态维护这个最大值,自然可以想到用优先队列(priority_queue)。当前的最大值如果是 A_i+B_j+C_k,则就把上述的三个值丢到这个大根堆里,进行 K 次操作即可。
  • 此外,还需要考虑重复的情况,比如由 A_{i-1},B_j,C_k 可以产生 A_i,B_j,C_k,而 A_i,B_{j-1},C_k 也可以产生 A_i,B_j,C_k,故可用 map下标组合去重(而不是对和的值去重!!),具体细节注意一下可以用 pair套pair 来确定3个下标,当然也可以再开个结构体去重载小于号(懒得写有点麻烦....)
  • O(KlogK)

Solution_3:

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef unsigned long long ull;

ll a[1005],b[1005],c[1005];

struct Node{
	int i,j,k;
	Node(){}
	Node(int i,int j,int k):i(i),j(j),k(k){}
	
	bool operator < (const Node &A) const {
		return a[i]+b[j]+c[k] < a[A.i]+b[A.j]+c[A.k];
	}
};

priority_queue<Node> pq;
map<pair<pair<int,int>,int>,int> mp; //下标组合去重

int main() {
	int x,y,z,K; 
	cin >> x >> y >> z >> K;
	for(int i=0;i<x;i++) cin >> a[i];
	for(int i=0;i<y;i++) cin >> b[i];
	for(int i=0;i<z;i++) cin >> c[i];
	sort(a,a+x,greater<ll>());
	sort(b,b+y,greater<ll>());
	sort(c,c+z,greater<ll>());
	
	pq.push(Node(0,0,0));
	mp[make_pair(make_pair(0,0),0)] = 1;
	while(K--) {
		Node now = pq.top();	
		int ni=now.i; int nj=now.j; int nk=now.k;
		pq.pop();
		cout << a[ni] + b[nj] + c[nk] << endl;
		// 下标合法 && 下标组合未重复
		if(ni+1 < x && !mp.count(make_pair(make_pair(ni+1,nj),nk))) {
			pq.push(Node(ni+1,nj,nk));
			mp[make_pair(make_pair(ni+1,nj),nk)] = 1;
		}
		if(nj+1 < y && !mp.count(make_pair(make_pair(ni,nj+1),nk))) {
			pq.push(Node(ni,nj+1,nk));
			mp[make_pair(make_pair(ni,nj+1),nk)] = 1;
		}
		if(nk+1 < z && !mp.count(make_pair(make_pair(ni,nj),nk+1))) {
			pq.push(Node(ni,nj,nk+1));
			mp[make_pair(make_pair(ni,nj),nk+1)] = 1;
		}
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值