Link: D - Cake 123
Description:
现有3种蛋糕,每个蛋糕都有一个称为美味度的整数值,如下所示:
- 第一种蛋糕的美味度是
- 第二种蛋糕的美味度是
- 第三种蛋糕的美味度是
现要求买三个蛋糕,每种蛋糕各一个,显然共有种方法,对其按照美味度总和降序排列。输出前 种方法的蛋糕美味度总和。
Constraints:
Analysis_1:
- 无脑暴力枚举后排序,显然复杂度
爆爆爆!,故考虑如何优化。分析数据规模,注意到的范围最大才 3000,故可以尝试枚举前两种蛋糕的所有组合,取前 种,再用这 种进一步和第三种蛋糕去组合,再取前 种即可。
Sulution_1:
vector<ll> a,b,c;
int main() {
int x,y,z,K;
cin >> x >> y >> z >> K;
for(int i=0;i<x;i++) {
ll t; cin >> t;
a.push_back(t);
}
for(int i=0;i<y;i++) {
ll t; cin >> t;
b.push_back(t);
}
for(int i=0;i<z;i++) {
ll t; cin >> t;
c.push_back(t);
}
//处理前两种组合
vector<ll> ab;
for(int i=0;i<x;i++) {
for(int j=0;j<y;j++) {
ab.push_back(a[i]+b[j]);
}
}
sort(ab.begin(),ab.end(),greater<ll>());
// 取前K种和第三种组合,注意前两种若不够K,要取min
vector<ll> ans;
for(int i=0;i<min(K,x*y);i++) {
for(int j=0;j<z;j++) {
ans.push_back(ab[i]+c[j]);
}
}
sort(ans.begin(),ans.end(),greater<ll>());
for(int i=0;i<K;i++) cout << ans[i] << endl;
return 0;
}
Analysis_2:
- 如果把每种蛋糕分别排序呢?每次按美味度最大的依次取出,可以保证一定在前 种,但不一定是严格降序的,故对这些满足条件的再做一次排序即可。
Solution_2:
ll a[1005],b[1005],c[1005];
int main() {
int x,y,z,K;
cin >> x >> y >> z >> K;
for(int i=0;i<x;i++) cin >> a[i];
for(int i=0;i<y;i++) cin >> b[i];
for(int i=0;i<z;i++) cin >> c[i];
sort(a,a+x,greater<ll>());
sort(b,b+y,greater<ll>());
sort(c,c+z,greater<ll>());
vector<ll> ans;
for(int i=0;i<x;i++) {
for(int j=0;j<y;j++) {
for(int k=0;k<z;k++) {
//按照序号依次取
if((i+1)*(j+1)*(k+1) <= K) ans.push_back(a[i]+b[j]+c[k]);
}
}
}
sort(ans.begin(),ans.end(),greater<ll>());
for(int i=0;i<K;i++) cout << ans[i] << endl;
return 0;
}
Analysis_3:
- 顺着上面的思路,(分别排好序后)和最大的肯定是 ,次大的一定是 三者其一,即只将一个最大值改为次大值,以此类推,每次都面临相同的选择,故我们要动态维护这个最大值,自然可以想到用优先队列(priority_queue)。当前的最大值如果是 ,则就把上述的三个值丢到这个大根堆里,进行 K 次操作即可。
- 此外,还需要考虑重复的情况,比如由 可以产生 ,而 也可以产生 ,故可用 map 对下标组合去重(而不是对和的值去重!!),具体细节注意一下可以用 pair套pair 来确定3个下标,当然也可以再开个结构体去重载小于号(
懒得写有点麻烦....)
Solution_3:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
ll a[1005],b[1005],c[1005];
struct Node{
int i,j,k;
Node(){}
Node(int i,int j,int k):i(i),j(j),k(k){}
bool operator < (const Node &A) const {
return a[i]+b[j]+c[k] < a[A.i]+b[A.j]+c[A.k];
}
};
priority_queue<Node> pq;
map<pair<pair<int,int>,int>,int> mp; //下标组合去重
int main() {
int x,y,z,K;
cin >> x >> y >> z >> K;
for(int i=0;i<x;i++) cin >> a[i];
for(int i=0;i<y;i++) cin >> b[i];
for(int i=0;i<z;i++) cin >> c[i];
sort(a,a+x,greater<ll>());
sort(b,b+y,greater<ll>());
sort(c,c+z,greater<ll>());
pq.push(Node(0,0,0));
mp[make_pair(make_pair(0,0),0)] = 1;
while(K--) {
Node now = pq.top();
int ni=now.i; int nj=now.j; int nk=now.k;
pq.pop();
cout << a[ni] + b[nj] + c[nk] << endl;
// 下标合法 && 下标组合未重复
if(ni+1 < x && !mp.count(make_pair(make_pair(ni+1,nj),nk))) {
pq.push(Node(ni+1,nj,nk));
mp[make_pair(make_pair(ni+1,nj),nk)] = 1;
}
if(nj+1 < y && !mp.count(make_pair(make_pair(ni,nj+1),nk))) {
pq.push(Node(ni,nj+1,nk));
mp[make_pair(make_pair(ni,nj+1),nk)] = 1;
}
if(nk+1 < z && !mp.count(make_pair(make_pair(ni,nj),nk+1))) {
pq.push(Node(ni,nj,nk+1));
mp[make_pair(make_pair(ni,nj),nk+1)] = 1;
}
}
return 0;
}