- 文章全文,都以byte类型表示数(1字节,8位)
二进制 -> 十进制
需求:将 10010100 转成 10 进制数
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 值 |
---|---|---|---|---|---|---|---|---|
符号位 (-) | 26*0 | 25*0 | 24*1 | 23*0 | 22*1 | 21*0 | 20*0 | |
- | 0 | 0 | 16 | 0 | 4 | 0 | 0 | -20 |
十进制 -> 二进制
需求:将 -20 转成 二进制
-
将 十进制数 除以 2 ,得出的商再除以2,一直除到商为0。
-
将余数倒叙排列,这里以byte类型(一个字节,8比特位)为例,得出的余数不足8位,从高位开始补齐。
-
补充符号位,正为0,负为1
原码 ->反码-> 补码
正数的原码、反码、补码都是一样的。下面主要说一下负数,以“-13”为例。
- 参照 十进制转二进制,求出 -13的原码 为 10001101。
- 原码 ->反码,符号位不变,其余取反。
- 反码 -> 补码,反码基础上 加1。
补码才是计算机中存储的二进制数
。
补码->反码->原码
&(按位与)
参加运算的两个二进制数,同时为1,才为1,否则为0。举例 3&5=1。
|(按位或)
参加运算的两个二进制数,一个为1就为1,否则为0。2 | 4=6
^(按位异或)
参加运算的两个二进制数,位不同则为1,位相同则为0。6^7=1
~(按位非)
需要一个操作数,非运算会将该数的底层二进制码(补码)取反。~ -5 =4
<< (左位移运算符)
注:位移补码,而非原码。。。
将二进制码整体左移指定位数,左移后空出来的位用“0”填充,例如 -5 << 2 = -20
-5 | 二进制码 |
---|---|
原码 | 1000 0101 |
反码 | 1111 1010 |
补码 | 1111 1011 |
补码左位移两位。
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | |||
1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 移出去的被截断,后面补充两个0 |
最终得到了 11101100,注意:此时还是补码,需要转换成原码。
二进制码 | 备注 | |
---|---|---|
补码 | 11101100 | 补码减1得反码 |
反码 | 11101011 | 首位不变,其余取反得原码 |
原码 | 10010100 | 十进制转二进制,得 -(24+22)= -20 |
>>(右位移运算符)与 >>>(无符号右位移运算符)
>>
把操作数的二进制码右位移指定位数,左边空出来的位以原来的符号位填充。原来是负数就填充1,原来是正数就填充0。符号位不变。
- 举例: -5 >> 2 【把 -5 的底层机器数(补码)右移 2位。移动的都是补码,千万别蒙。机器中存储的都是数值的补码形式。】
-5的补码为1111 1011
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 结果 | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | -2 |
注:得到的是补码。需要求出原码。值为-2,过程省略。。。
>>>
把操作数的二进制码右位移指定位数,左边空出来的位以0
填充。无符号位右移结果总是一个正数。
- 举例: -5 >>> 2【无符号右移,用0填充,结果总是正数。】
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 结果 | ||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 62 |
注:正数的原码、反码、补码都是一样的。