求逆序数
描述
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
现在,给你一个N个元素的序列,请你判断出它的逆序数是多少。
比如 1 3 2 的逆序数就是1。
格式
输入格式
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
每组测试数据的每一行是一个整数N表示数列中共有N个元素(2〈=N〈=100000)
随后的一行共有N个整数Ai(0<=Ai<1000000000),表示数列中的所有元素。
数据保证在多组测试数据中,多于10万个数的测试数据最多只有一组。
输出格式
输出该数列的逆序数
样例
样例输入 Copy
2
2
1 1
3
1 3 2
样例输出 Copy
0
1
最开始我用冒泡排序,发现时间超限,后来被告知要用归并排序,于是就看了很多博客,对归并排序有了点了解。
归并排序:就是把数组拆成两半,再把两半有分别拆开,再拆,拆,拆,直到每组只剩下一个数,一个数肯定是有序的,然后再进行有序数组的合并,一层一层地合并,直至所有拆开的小数组都合并成一个大数组。感觉和快排的方法有点相像。
求逆序数,是在合并时进行判断,拆开的数组有前后之分,如果前面的数组大于后面的数组,又因为是有序的,前面数组后面的数都大于后面数组此时进行比较的数,逆序数就是前面数组的长度减去当前比较的位置再加上一(当前比较的数)。
#include<stdio.h>
#include<math.h>
#include<malloc.h>
long long int sum;
long long int funsort(long long int a[],long long int b[],long long int left,long long int mid,long