SpringCloud入门

入门

分布式架构:根据业务功能对系统做拆分,每个业务功能模块作为独立项目开发,称为一个服务。

分布式架构的优缺点:

优点:

  • 降低服务耦合

  • 有利于服务升级和拓展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?

  • 服务之间如何调用?

  • 服务的调用关系如何管理?

人们需要制定一套行之有效的标准来约束分布式架构。

RestTemplate

如何让Controller像浏览器一样发送请求

1. 注册RestTemplate

@Bean
    public RestTemplate restTemplate(){
        return new RestTemplate();
    }

2. 利用RestTemplate发送请求

String url = "http://localhost:8081/user/1";

        User user = restTemplate.getForObject(url, User.class);
        order.setUser(user);

Eureka注册中心

  • order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?

  • 有多个user-service实例地址,order-service调用时该如何选择?

  • order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

Eureka就可以解决这些问题

每一个服务启动时都会注册给Eureka

这样Eureka就能去管理这些服务,记录服务的功能 健康状态等

搭建注册中心

1. 引入依赖

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>
</dependencies>

2. 加配置

server:
  port: 10086
spring:
  application:
    name: eureka-server
eureka:
  client:
    serviceUrl:
      defaultZone: http://127.0.0.1:10086/eureka


    registerWithEureka=false:

    fetchRegistry=false:

3. 启动服务

服务注册

1. 引入依赖

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

2. 配置yml

server:
  port: 8081
spring:
  application:
    name: user-server

eureka:
  client:
    serviceUrl:
      defaultZone: http://127.0.0.1:10086/eureka


    registerWithEureka=false:

    fetchRegistry=false:

负载均衡

使用copy Configuration 对服务进行复制

 为了防止端口占用 需要在VM加一个参数

-Dserver.port = 8082

实现负载均衡需要

1. 设置@LoadBalanced

在RestTemplante上

2. RestTemplate的请求地址进行修改

String url = "http://user-server/user/"+order.getUserId();

中间的位置填入注册服务的名称

Ribbon负载均衡

LoadBalancerIntercepor

拦截了用户的HttpRequest请求,然后做了几件事:

  • request.getURI():获取请求uri,本例中就是 http://user-service/user/8

  • originalUri.getHost():获取uri路径的主机名,其实就是服务id,user-service

  • this.loadBalancer.execute():处理服务id,和用户请求。

这里的this.loadBalancerLoadBalancerClient类型,我们继续跟入。

LoadBalancerClient

  • getLoadBalancer(serviceId):根据服务id获取ILoadBalancer,而ILoadBalancer会拿着服务id去eureka中获取服务列表并保存起来。

  • getServer(loadBalancer):利用内置的负载均衡算法,从服务列表中选择一个。本例中,可以看到获取了8082端口的服务

负载均衡策略IRule

 总结

 nacos

nacos注册中心

Nacos是SpringCloudAlibaba的组件,而SpringCloudAlibaba也遵循SpringCloud中定义的服务注册、服务发现规范。因此使用Nacos和使用Eureka对于微服务来说,并没有太大区别。

使用步骤

1. 引入依赖

版本管理依赖

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-alibaba-dependencies</artifactId>
    <version>2.2.6.RELEASE</version>
    <type>pom</type>
    <scope>import</scope>
</dependency>

nacos依赖

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

2. 添加配置项

spring:  
    cloud:
        nacos:
            server-addr: localhost:8848

其他的都不用动,包括联合查询的url

nacos服务分级存储模型

一个**服务**可以有多个**实例**,例如我们的user-service,可以有:

- 127.0.0.1:8081
- 127.0.0.1:8082
- 127.0.0.1:8083

假如这些实例分布于全国各地的不同机房,例如:

- 127.0.0.1:8081,在上海机房
- 127.0.0.1:8082,在上海机房
- 127.0.0.1:8083,在杭州机房

Nacos就将同一机房内的实例 划分为一个**集群*

简单来说一个服务存在多个实例,几个实例组成一个集群

  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        clusterName: HZ

将上述实例分配给HZ这个集群

nacos负载均衡策略

userservice:
  ribbon:
    NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则 

权重管理

nacos环境隔离

Nacos提供了namespace来实现环境隔离功能。

  • nacos中可以有多个namespace

  • namespace下可以有group、service等

  • 不同namespace之间相互隔离,例如不同namespace的服务互相不可见

使用方法

1. 在nacos服务器创建命名空间

2. 在yml配置项中添加命名空间的id

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ
        namespace: 492a7d5d-237b-46a1-a99a-fa8e98e4b0f9 # 命名空间,填ID

nacos细节

  • Nacos与eureka的共同点

    • 都支持服务注册和服务拉取

    • 都支持服务提供者心跳方式做健康检测

  • Nacos与Eureka的区别

    • Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式

    • 临时实例心跳不正常会被剔除,非临时实例则不会被剔除

    • Nacos支持服务列表变更的消息推送模式,服务列表更新更及时

    • Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式

spring:
  cloud:
    nacos:
      discovery:
        ephemeral: false # 设置为非临时实例

发现服务标红 表示服务挂掉了,但是因为是非临时实例 所以他不会被剔除

nacos配置

可以用nacos的配置中心 集中管理微服务的application.yml配置

Nacos一方面可以将配置集中管理,另一方可以在配置变更时,及时通知微服务,实现配置的热更新。

 

 在这里面进行配置更新

不要什么配置文件都往里写,主要写哪些经常变更的配置问及那

需要提前知道nacos地址,所以要在读取application.yml之前得到nacos地址

springboot提供了一个bootstrap.yml可以达到这个目的

使用步骤

1. 需要先引入依赖

<!--nacos配置管理依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>

2. 添加bootstrap.yaml

spring:
  application:
    name: userservice # 服务名称
  profiles:
    active: dev #开发环境,这里是dev 
  cloud:
    nacos:
      server-addr: localhost:8848 # Nacos地址
      config:
        file-extension: yaml # 文件后缀名

注意一定看日志 (我在这卡了半天) 

发现自己报错的时候看看bootstrap日志的路径对不对

nacos集群

1. 分别启动三个nacos

每个nacos需要单独重新配置端口号

每个nacos也需要对数据库进行统一设置

2. 初始化nacos数据库

Nacos默认数据存储在内嵌数据库Derby中,不属于生产可用的数据库。

这里我们以单点的数据库为例来讲解。

首先新建一个数据库,命名为nacos

3. 利用nginx做负载均衡

4. 配置upstream

三个地址均为nacos地址

5. 修改java代码的nacos端口号改为nginx端口

 Feign

基础使用

优雅的实现http请求的发送

1. 引入依赖

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

2. 开启Feign自动装配

3. 编写客户端声明

import cn.itcast.order.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

@FeignClient("userservice")
public interface UserClient {
    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

Feign使用优化

Feign底层发起http请求,依赖于其它的框架。其底层客户端实现包括:

•URLConnection:默认实现,不支持连接池

•Apache HttpClient :支持连接池

•OKHttp:支持连接池

因此提高Feign的性能主要手段就是使用连接池代替默认的URLConnection。

1)引入依赖

在order-service的pom文件中引入Apache的HttpClient依赖:

<!--httpClient的依赖 -->
<dependency>
    <groupId>io.github.openfeign</groupId>
    <artifactId>feign-httpclient</artifactId>
</dependency>

2)配置连接池

在order-service的application.yml中添加配置:

feign:
  client:
    config:
      default: # default全局的配置
        loggerLevel: BASIC # 日志级别,BASIC就是基本的请求和响应信息
  httpclient:
    enabled: true # 开启feign对HttpClient的支持
    max-connections: 200 # 最大的连接数
    max-connections-per-route: 50 # 每个路径的最大连接数

最佳实践

继承

可以把Feign客户端和Controller层都继承一个UserAPI的接口

抽取

Gateway网关

Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。

Gateway网关是我们服务的守门神,所有微服务的统一入口。

网关的核心功能特性

权限控制:网关作为微服务入口,需要校验用户是是否有请求资格,如果没有则进行拦截。

路由和负载均衡:一切请求都必须先经过gateway,但网关不处理业务,而是根据某种规则,把请求转发到某个微服务,这个过程叫做路由。当然路由的目标服务有多个时,还需要做负载均衡。

限流:当请求流量过高时,在网关中按照下流的微服务能够接受的速度来放行请求,避免服务压力过大。

如何使用

1. 先写一个模块

因为路由也是一个微服务需要使用springboot进行启动

2. 写配置文件

server:
  port: 10010 # 网关端口
spring:
  application:
    name: gateway # 服务名称
  cloud:
    nacos:
      server-addr: localhost:8848 # nacos地址
    gateway:
      routes: # 网关路由配置
        - id: user-service # 路由id,自定义,只要唯一即可
          # uri: http://127.0.0.1:8081 # 路由的目标地址 http就是固定地址
          uri: lb://userservice # 路由的目标地址 lb就是负载均衡,后面跟服务名称
          predicates: # 路由断言,也就是判断请求是否符合路由规则的条件
            - Path=/user/** # 这个是按照路径匹配,只要以/user/开头就符合要求

告诉路由注册中心的地址

和一些路由相关的配置

然后可以做一下测试,发现网关配置是好用的

如果微服务请求微服务功能发生503错误

这个时候检查一下服务器是不是可用的

然后添加一个依赖

   <!--        需要添加负载均衡器-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-loadbalancer</artifactId>
        </dependency>

2020年之后gateway删除了ribbon负载均衡器

所以需要我们在添加一个负载均衡器

断言工厂

我们在配置文件中写的断言规则只是字符串,这些字符串会被Predicate Factory读取并处理,转变为路由判断的条件

例如Path=/user/**是按照路径匹配,这个规则是由

org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory类来

处理的,像这样的断言工厂在SpringCloudGateway还有十几个:

名称说明示例
After是某个时间点后的请求- After=2037-01-20T17:42:47.789-07:00[America/Denver]
Before是某个时间点之前的请求- Before=2031-04-13T15:14:47.433+08:00[Asia/Shanghai]
Between是某两个时间点之前的请求- Between=2037-01-20T17:42:47.789-07:00[America/Denver], 2037-01-21T17:42:47.789-07:00[America/Denver]
Cookie请求必须包含某些cookie- Cookie=chocolate, ch.p
Header请求必须包含某些header- Header=X-Request-Id, \d+
Host请求必须是访问某个host(域名)- Host=.somehost.org,.anotherhost.org
Method请求方式必须是指定方式- Method=GET,POST
Path请求路径必须符合指定规则- Path=/red/{segment},/blue/**
Query请求参数必须包含指定参数- Query=name, Jack或者- Query=name
RemoteAddr请求者的ip必须是指定范围- RemoteAddr=192.168.1.1/24
Weight权重处理

过滤器

拦截器

对用户的请求和微服务返回的数据做处理

Spring提供了31种不同的路由过滤器工厂。例如:

名称说明
AddRequestHeader给当前请求添加一个请求头
RemoveRequestHeader移除请求中的一个请求头
AddResponseHeader给响应结果中添加一个响应头
RemoveResponseHeader从响应结果中移除有一个响应头
RequestRateLimiter限制请求的流量

实例

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/** 
        filters: # 过滤器
        - AddRequestHeader=Truth, Itcast is freaking awesome! # 添加请求头
      default-filters: # 默认过滤项
          - AddRequestHeader=Truth, Itcast is freaking awesome! 

 全局过滤器

上面的拦截器

使用步骤

1. 先写接口

public interface GlobalFilter {
    /**
     *  处理当前请求,有必要的话通过{@link GatewayFilterChain}将请求交给下一个过滤器处理
     *
     * @param exchange 请求上下文,里面可以获取Request、Response等信息
     * @param chain 用来把请求委托给下一个过滤器
     * @return {@code Mono<Void>} 返回标示当前过滤器业务结束
     */
    Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain);
}

2. 写实现类

@Order(-1)
@Component
public class AuthorizeFilter implements GlobalFilter {
    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        // 1.获取请求参数
        MultiValueMap<String, String> params = exchange.getRequest().getQueryParams();
        // 2.获取authorization参数
        String auth = params.getFirst("authorization");
        // 3.校验
        if ("admin".equals(auth)) {
            // 放行
            return chain.filter(exchange);
        }
        // 4.拦截
        // 4.1.禁止访问,设置状态码
        exchange.getResponse().setStatusCode(HttpStatus.FORBIDDEN);
        // 4.2.结束处理
        return exchange.getResponse().setComplete();
    }
}

过滤器执行顺序

跨域问题

跨域问题:浏览器禁止请求的发起者与服务端发生跨域ajax请求,请求被浏览器拦截的问题

Doker

Docker为了解决依赖的兼容问题的,采用了两个手段:

  • 将应用的Libs(函数库)、Deps(依赖)、配置与应用一起打包

  • 将每个应用放到一个隔离容器去运行,避免互相干扰

简单来说Docker的运行只需要内核就可以了 所以可以运行在不同的操作系统上面

镜像(Image):Docker将应用程序及其所需的依赖、函数库、环境、配置等文件打包在一起,称为镜像。

容器(Container):镜像中的应用程序运行后形成的进程就是容器,只是Docker会给容器进程做隔离,对外不可见。

一切应用最终都是代码组成,都是硬盘中的一个个的字节形成的文件。只有运行时,才会加载到内存,形成进程。

镜像,就是把一个应用在硬盘上的文件、及其运行环境、部分系统函数库文件一起打包形成的文件包。这个文件包是只读的。

容器呢,就是将这些文件中编写的程序、函数加载到内存中允许,形成进程,只不过要隔离起来。因此一个镜像可以启动多次,形成多个容器进程。

DockerHub

开源应用程序非常多,打包这些应用往往是重复的劳动。为了避免这些重复劳动,人们就会将自己打包的应用镜像,例如Redis、MySQL镜像放到网络上,共享使用,就像GitHub的代码共享一样。

Docker架构

我们要使用Docker来操作镜像、容器,就必须要安装Docker。

Docker是一个CS架构的程序,由两部分组成:

  • 服务端(server):Docker守护进程,负责处理Docker指令,管理镜像、容器等

  • 客户端(client):通过命令或RestAPI向Docker服务端发送指令。可以在本地或远程向服务端发送指令。

安装docker

首先需要大家虚拟机联网,安装yum工具

yum install -y yum-utils \
           device-mapper-persistent-data \
           lvm2 --skip-broken

然后更新本地镜像源:

# 设置docker镜像源
yum-config-manager \
    --add-repo \
    https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
    
sed -i 's/download.docker.com/mirrors.aliyun.com\/docker-ce/g' /etc/yum.repos.d/docker-ce.repo
​
yum makecache fast

然后输入命令:

yum install -y docker-ce

docker-ce为社区免费版本。稍等片刻,docker即可安装成功。

 配置镜像加速器

针对Docker客户端版本大于 1.10.0 的用户

您可以通过修改daemon配置文件/etc/docker/daemon.json来使用加速器

sudo mkdir -p /etc/docker
sudo tee /etc/docker/daemon.json <<-'EOF'
{
  "registry-mirrors": ["https://7ipb1ql6.mirror.aliyuncs.com"]
}
EOF
sudo systemctl daemon-reload
sudo systemctl restart docker

docker命令

#info|version
docker info       #显示docker的系统信息,包括镜像和容器的数量
docker version    #显示docker的版本信息。
#帮助命令
docker 命令 --help #帮助命令
#镜像命令
docker images #查看所有本地主机上的镜像 可以使用docker image ls代替
docker search #搜索镜像
docker pull #下载镜像 docker image pull
docker rmi #删除镜像 docker image rm
#容器命令
docker run 镜像id #新建容器并启动
docker ps 列出所有运行的容器 docker container list
docker rm 容器id #删除指定容器
	#删除所有容器
	docker rm -f $(docker ps -aq)  	 #删除所有的容器
	docker ps -a -q|xargs docker rm  #删除所有的容器
#启动和停止容器
docker start 容器id	#启动容器
docker restart 容器id	#重启容器
docker stop 容器id	#停止当前正在运行的容器
docker kill 容器id	#强制停止当前容器
#退出容器
exit 		#容器直接退出
ctrl +P +Q  #容器不停止退出 	---注意:这个很有用的操作
#其他常用命令
docker run -d 镜像名  #后台启动命令
docker logs 		#查看日志
docker top 容器id 	#查看容器中进程信息ps
docker inspect 容器id  #查看镜像的元数据
docker exec 		#进入当前容器后开启一个新的终端,可以在里面操作。(常用)
docker attach 		# 进入容器正在执行的终端
docker cp 容器id:容器内路径  主机目的路径	#从容器内拷贝到主机上

容器三种状态

运行镜像

创建并运行nginx容器的命令:

docker run --name containerName -p 80:80 -d nginx

命令解读:

  • docker run :创建并运行一个容器

  • --name : 给容器起一个名字,比如叫做mn

  • -p :将宿主机端口与容器端口映射,冒号左侧是宿主机端口,右侧是容器端口

  • -d:后台运行容器

  • nginx:镜像名称,例如nginx

这里的-p参数,是将容器端口映射到宿主机端口。

默认情况下,容器是隔离环境,我们直接访问宿主机的80端口,肯定访问不到容器中的nginx。

现在,将容器的80与宿主机的80关联起来,当我们访问宿主机的80端口时,就会被映射到容器的80,这样就能访问到nginx了:

数据卷

docker修改配置文件存在一些问题

1. 修改比较麻烦

2. 无法同时配置多个容器

这时候可以使用数据卷来解决这个问题

数据卷就像一个分身一样,对数据卷的修改可以反馈到容器里面

数据卷的作用:

  • 将容器与数据分离,解耦合,方便操作容器内数据,保证数据安全

数据卷操作:

  • docker volume create:创建数据卷

  • docker volume ls:查看所有数据卷

  • docker volume inspect:查看数据卷详细信息,包括关联的宿主机目录位置

  • docker volume rm:删除指定数据卷

  • docker volume prune:删除所有未使用的数据卷

DockerFile

构建自定义的镜像时,并不需要一个个文件去拷贝,打包。

我们只需要告诉Docker,我们的镜像的组成,需要哪些BaseImage、需要拷贝什么文件、需要安装什么依赖、启动脚本是什么,将来Docker会帮助我们构建镜像。

而描述上述信息的文件就是Dockerfile文件。

Dockerfile就是一个文本文件,其中包含一个个的指令(Instruction),用指令来说明要执行什么操作来构建镜像。每一个指令都会形成一层Layer。

# 指定基础镜像
FROM ubuntu:16.04
# 配置环境变量,JDK的安装目录
ENV JAVA_DIR=/usr/local

# 拷贝jdk和java项目的包
COPY ./jdk8.tar.gz $JAVA_DIR/
COPY ./docker-demo.jar /tmp/app.jar

# 安装JDK
RUN cd $JAVA_DIR \
 && tar -xf ./jdk8.tar.gz \
 && mv ./jdk1.8.0_144 ./java8

# 配置环境变量
ENV JAVA_HOME=$JAVA_DIR/java8
ENV PATH=$PATH:$JAVA_HOME/bin

# 暴露端口
EXPOSE 8090
# 入口,java项目的启动命令
ENTRYPOINT java -jar /tmp/app.jar

MQ

mq在微服务当中可以解决的问题

同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。

  见另一篇文章

ES

Elasticsearch

mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float、

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

创建索引库

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

PUT /heima
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "falsae"
      },
      "name":{
        "properties": {
          "firstName": {
            "type": "keyword"
          }
        }
      },
      // ... 略
    }
  }
}

ES使用RESTful风格

基本语法

  • 请求方式:GET/PUT/DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式

GET /索引库名

创建文档库

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

POST /heima/_doc/1
{
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档   (相当于替换)

  • 增量修改:修改文档中的部分字段

全量修改

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}
​

示例:

PUT /heima/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

POST /heima/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

索引操作总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }

  • 查询文档:GET /{索引库名}/_doc/文档id

  • 删除文档:DELETE /{索引库名}/_doc/文档id

  • 修改文档:

    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }

    • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

ES客户端

操纵索引

package cn.itcast.hotel;


import cn.itcast.hotel.constants.HotelConstants;
import lombok.extern.slf4j.Slf4j;
import org.apache.http.HttpHost;
import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.CreateIndexRequest;
import org.elasticsearch.client.indices.GetIndexRequest;
import org.elasticsearch.common.xcontent.XContentType;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

/**
 * @projectName: hotel-demo
 * @package: cn.itcast.hotel
 * @className: HotelIndexTest
 * @author: Eric
 * @description: TODO
 * @date: 8/1/2023 9:52 AM
 * @version: 1.0
 */
@Slf4j
public class HotelIndexTest {
    private RestHighLevelClient client;


    @BeforeEach
    void setUp(){

        this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.232.146:9200")));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }

    @Test
    void createHotelIndex() throws IOException {

        //创建Request对象
        CreateIndexRequest hotel = new CreateIndexRequest("hotel");
        //准备请求的参数 DSL语句
        hotel.source(HotelConstants.MAPPING_TEMPLATE, XContentType.JSON);
        //发送请求
        client.indices().create(hotel, RequestOptions.DEFAULT);


    }


    @Test
    void deleteHotelIndex() throws IOException {
        //创建Request对象
        DeleteIndexRequest hotel = new DeleteIndexRequest("hotel");
        //发送请求
        client.indices().delete(hotel, RequestOptions.DEFAULT);
    }

    @Test
    void testExistHotelIndex() throws IOException {
        GetIndexRequest request = new GetIndexRequest("hotel");
        boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
        System.out.println(exists);

    }



}

使用客户端对索引进行操作

步骤可以抽取为以下几步

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient

  • 创建XxxIndexRequest。XXX是Create、Get、Delete

  • 准备DSL( Create时需要,其它是无参)

  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

操纵文档

//Document
    @Test
    void testDocument() throws IOException {
        Hotel hotel = hotelService.getById(38609L);
        HotelDoc hotelDoc = new HotelDoc(hotel);
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());

        request.source(JSON.toJSONString(hotelDoc),XContentType.JSON);

        client.index(request,RequestOptions.DEFAULT);

    }
    @Test
    void testGetDocumentById() throws IOException{
        GetRequest request = new GetRequest("hotel","38609");

        GetResponse response = client.get(request,RequestOptions.DEFAULT);

        String sourceAsString = response.getSourceAsString();

        HotelDoc jsonObject = JSON.parseObject(sourceAsString, HotelDoc.class);

        System.out.println(jsonObject);


    }

    @Test
    void testUpdateDocument() throws IOException {
        UpdateRequest request = new UpdateRequest("hotel","38609");
        //更新使用doc
        request.doc("price","952");

        UpdateResponse update = client.update(request,RequestOptions.DEFAULT);

    }


    @Test
    void testDeleteDocument() throws IOException {
        DeleteRequest request = new DeleteRequest("hotel","38609");


        DeleteResponse delete = client.delete(request,RequestOptions.DEFAULT);

    }

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象

  • 2)准备请求参数,也就是DSL中的JSON文档

  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

批量导入数据

在实际生产过程中我们不可能一条一条的添加数据所以这里使用ESclient的批量导入数据的功能从数据库里面导入数据

DSL查询

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query

    • multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids

    • range

    • term

  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance

    • geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool

    • function_score

简单查询

查询所有

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "match_all": {
  
    }
  }
}

一般就返回10条信息

全文检索查询

根据用户的分词对文档进行搜索

一个根据多字段来查询一个单字段查询

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

精准查询

查询的值必须和字段的值保持一致

  • term:根据词条精确值查询

  • range:根据值的范围查询

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

范围查询

 

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

算分函数查询

后来升级为

 

 但是和上面的那个差不多

布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

filter 和 must_not的区别

filter 必须参与匹配,但是不参与计算分数

must_not 必须不进行匹配,因为都没有进行匹配,所以更不需要计算分数了

搜索结果处理

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值