Say you have an array for which theith element is the price of a given stock on dayi.
Design an algorithm to find the maximum profit. You may complete at mostk transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
这道题仍旧和股票相关,是第121、122、123三题的汇总,把交易次数变成了最多k次,难度为Hard。
每一天的操作分三种情况,不操作、买入或卖出,不操作的情况最大收益不变。初始收益为0,买入时收益减买入价格,卖出时收益加卖出价格。如果没有前面三题的基础,这道题还是挺难的,不过通过第121和第123题的一步步深入,我们能够水到渠成地想出这道题的状态机迁移策略。每天的状态变为:
-
……
-
买入第m次,没有卖出
-
卖出第m次,没有买入
-
买入第m+1次,没有卖出
-
卖出第m+1次,没有买入
-
……
由此便可以依照第123题完成这道题。
但提交之后,在k非常大的时候报了超时,因而在每天的状态变更中依据k进行迭代可能存在问题。看了一下报错的k,貌似是10亿次。。测试的天数有这么大吗?如果只有10天的股票价格,能够操作5次以上吗?所以在操作次数大于天数的一半时是不能操作那么多次的,就相当于不限操作次数,这不正是第122题嘛。因而我们对这种情况按照第122题的方式用贪婪算法进行预先处理。(这部分没有想到的话略坑。。看了别人的方法才知道错在了哪里。)
具体代码:
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if(k <= 0) return 0;
vector<int> profit;
int maxPf = 0;
if(k > prices.size()/2) {
for(int i=1; i<prices.size(); i++)
maxPf += max(prices[i]-prices[i-1], 0);
return maxPf;
}
for(int i=0; i<k; i++) {
profit.push_back(INT_MIN);
profit.push_back(0);
}
for(int i=0; i<prices.size(); i++) {
for(int j=2*k-1; j>1; j-=2) {
profit[j] = max(profit[j], profit[j-1]+prices[i]);
profit[j-1] = max(profit[j-1], profit[j-2]-prices[i]);
}
profit[1] = max(profit[1], profit[0]+prices[i]);
profit[0] = max(profit[0], -prices[i]);
}
for(int i=1; i<profit.size(); i+=2) {
maxPf = max(maxPf, profit[i]);
}
return maxPf;
}
};