March.31.2022——54.最大二叉树
题目描述
54.最大二叉树
给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
- 二叉树的根是数组中的最大元素。
- 左子树是通过数组中最大值左边部分构造出的最大二叉树。
- 右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点。
输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
- 空数组,无子节点。
- [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
- 空数组,无子节点。
- 只有一个元素,所以子节点是一个值为 1 的节点。
- [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
- 只有一个元素,所以子节点是一个值为 0 的节点。
- 空数组,无子节点。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
解题思路
-
题目都说了,递归
-
那就开始想:递归三要素是啥?
-
构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。
-
确定递归函数的参数和返回值
-
- 参数就是传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。
-
确定终止条件
-
- 题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了
- 那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回
-
确定单层递归的逻辑
-
- 这里有三步工作
-
- 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。
- 最大值所在的下标左区间 构造左子树。这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。
- 最大值所在的下标右区间 构造右子树。判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。
-
代码实现
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
//先定义初试变量 设置递归函数的三个返回值
return constructMaximumBinaryTree1(nums,0,nums.length);
}
public TreeNode constructMaximumBinaryTree1(int[] nums,int leftIndex,int rightIndex){
//数组中没有元素了
if(rightIndex - leftIndex < 1){
return null;
}
//数组中只有一个元素了
if(leftIndex-rightIndex == 1){
return new TreeNode(nums[leftIndex]);
}
//设置最大值和最大值的下标的初始值
int maxIndex = leftIndex;
int maxval = nums[maxIndex];
//开始寻找最大值 此处注意寻找最大值的区间:为什么不是0 到 nums.length
for(int i=leftIndex+1;i<rightIndex;i++){
if(nums[i]>maxval){
maxval = nums[i];
maxIndex = i;
}
}
//寻找到整个数组的最大值之后,就可以开始构建二叉树了
TreeNode root = new TreeNode(maxval);
//根据maxIndex划分二叉树
root.left = constructMaximumBinaryTree1(nums,leftIndex,maxIndex);
root.right = constructMaximumBinaryTree1(nums,maxIndex+1,rightIndex);
return root;
}
}