自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)

原创 剑指 Offer 最优题解系列python--字符串

剑指 Offer 最优题解系列python--字符串替换空格表示数值的字符串字符串的排列替换空格class Solution(object): def replaceSpace(self, s): """ :type s: str :rtype: str """ res = [] for c in s: if c == ' ': res.append("%20")

2020-09-12 14:44:59 24

原创 pymysql-增删改查

基本框架# -*- coding:utf-8 -*-import pymysqluser = input('请输入用户名:')pwd = input('请输入密码:')# 1.连接conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='123', db='t1', charset='utf8')print(conn)# 2.创建游标cursor = conn.cursor()#注意%s

2020-08-23 16:55:54 42 1

原创 nlp入门赛task6-基于深度学习的文本分类3-BERT

BERT微调将最后一层的第一个token即[CLS]的隐藏向量作为句子的表示,然后输入到softmax层进行分类。预训练BERT以及相关代码下载地址:链接: https://pan.baidu.com/s/1zd6wN7elGgp1NyuzYKpvGQ 提取码: tmp5import loggingimport randomimport numpy as npimport torchlogging.basicConfig(level=logging.INFO, format='%(asct

2020-08-04 23:24:09 127

原创 剑指 Offer 最优题解系列python--二叉树

1.重建二叉树明天补思路睡了# Definition for a binary tree node.# class TreeNode(object):# def __init__(self, x):# self.val = x# self.left = None# self.right = Noneclass Solution(object): def buildTree(self, preorder, inorder):

2020-08-04 23:19:52 143

原创 nlp入门赛task5-使用gensim训练word2vec

使用gensim训练word2vec本DEMO只使用部分数据,使用全部数据预训练的词向量地址:链接: https://pan.baidu.com/s/1ewlck3zwXVQuAzraZ26Euw 提取码: qbpr1import logging2import random3​4import numpy as np5import torch6​7logging.basicConfig(level=logging.INFO, format=’%(asctime)-15s %(l

2020-07-31 20:07:55 112

原创 nlp入门赛task4 - 基于深度学习的文本分类1-fastText

基于深度学习的文本分类1-fastText学习目标文本表示方法 Part2FastText安装fasttext.supervised() 参数如何使用验证集调参本章小结本章作业修改参数十折交叉验证用StratifiedKFold实现十折交叉划分利用十折交叉验证调参在上一章节,我们使用传统机器学习算法来解决了文本分类问题,从本章开始我们将尝试使用深度学习方法。与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。从本章开始我们将学习如何使用深度学习来完成文本表示。学习目标学习Fast

2020-07-27 16:59:58 90

原创 nlp入门赛task3-基于机器学习的文本分类

基于机器学习的文本分类Task3 基于机器学习的文本分类学习目标机器学习模型文本表示方法 Part1One-hotBag of Words()N-gram()TF-IDF基于机器学习的文本分类本章小结本章作业尝试改变TF-IDF的参数,并验证精度尝试使用其他机器学习模型,完成训练和验证总结在上一章节,我们对赛题的数据进行了读取,并在末尾给出了两个小作业。如果你顺利完成了作业,那么你基本上对Python也比较熟悉了。在本章我们将使用传统机器学习算法来完成新闻分类的过程,将会结束到赛题的核心知识点。Task

2020-07-25 23:25:20 38

原创 nlp入门赛task2-数据读取与数据分析

数据读取与数据分析本章主要内容为数据读取和数据分析,具体使用Pandas库完成数据读取操作,并对赛题数据进行分析构成。学习目标学习使用Pandas读取赛题数据分析赛题数据的分布规律数据读取赛题数据虽然是文本数据,每个新闻是不定长的,但任然使用csv格式进行存储。因此可以直接用Pandas完成数据读取的操作。import pandas as pdimport matplotlib.pyplot as plttrain_df = pd.read_csv('data/train_set.cs

2020-07-22 16:39:41 62

原创 nlp入门赛task1-赛题理解

赛题名称:零基础入门NLP之新闻文本分类比赛链接:https://tianchi.aliyun.com/competition/entrance/531810/introduction赛题数据赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试

2020-07-21 20:06:06 37

原创 python实现链表处理

如何使用python实现一个链表?创建节点类,生成节点对象。包含数据和下一个节点的引用创建链表类,生成链表对象,可对链表进行数据操作class Node(object): def __init__(self, elem,next=None): self.elem = elem self.next = next# node1 = Node(20)# node2 = Node(10)# node1.next = node2 #建立关联 node1.n

2020-07-19 00:23:24 70

原创 剑指 Offer 最优题解系列python--链表

剑指 Offer 最优题解系列python--链表学习笔记1. 反转链表学习笔记python实现链表1. 反转链表1.反转链表方法一:好理解的双指针定义两个指针: prepre 和 curcur ;prepre 在前 curcur 在后。每次让 prepre 的 nextnext 指向 curcur ,实现一次局部反转局部反转完成之后, prepre 和 curcur 同时往前移动一个位置循环上述过程,直至 prepre 到达链表尾部class Solution:

2020-07-19 00:10:45 73

空空如也

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除