ZeroSnow1024
码龄6年
关注
提问 私信
  • 博客:80,112
    社区:626
    问答:8
    动态:201
    80,947
    总访问量
  • 111
    原创
  • 30,010
    排名
  • 417
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:yeah

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 加入CSDN时间: 2019-03-27
博客简介:

-

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    472
    当月
    0
个人成就
  • 获得581次点赞
  • 内容获得17次评论
  • 获得556次收藏
创作历程
  • 91篇
    2024年
  • 14篇
    2023年
  • 6篇
    2022年
  • 4篇
    2021年
成就勋章
TA的专栏
  • 资源收藏
    1篇
  • python笔记
    38篇
  • 基本操作
    16篇
  • 统计Statistics笔记
    19篇
  • 大数据笔记
    8篇
  • 基本概念
    15篇
  • pandas笔记
    21篇
  • SQL笔记
    18篇
  • 笔记
    12篇
  • 可视化
    3篇
  • Linux笔记
    2篇
  • bug和error
    4篇
  • R笔记
    1篇
  • 网站开发
    2篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 云原生
    docker容器
  • 人工智能
    opencvnlp分类回归
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 收藏
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
搜TA的内容
搜索 取消

我新Dell机子的各种问题

Win11。
原创
发布博客 2024.10.04 ·
242 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

用Sklearn和Statsmodels来做linear_regression和Logistic_regression注意事项

默认情况下,LogisticRegression 的 penalty 参数设置为 ‘l2’,同时 solver 参数默认为 ‘lbfgs’,它是一种优化算法,用于找到损失函数的最小值。C 参数控制正则化的强度,其默认值是 1.0,较小的 C 值意味着更强的正则化(即更平滑的模型),而较大的 C 值则意味着更弱的正则化(允许模型更复杂)。而在 scikit-learn 中,当你使用 LinearRegression 类时,是否添加常数项(截距)是由类初始化时的 fit_intercept 参数决定的。
原创
发布博客 2024.10.03 ·
1040 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

Sensitivity, specificity, positive prediction rate,negative prediction rate, misclassification error

在统计学和机器学习中,敏感性(Sensitivity)、特异性(Specificity)、阳性预测值(Positive Prediction Rate, PPV)、阴性预测值(Negative Prediction Rate, NPV)和误分类错误(Misclassification Error)是评估分类模型性能的常用指标。这些指标在不同的应用场景中可能会有不同的重要性。例如,在医疗诊断中,可能会更关注敏感性 sensitivity (recall),以确保尽可能多的实际病例被检测出来;
原创
发布博客 2024.10.03 ·
1012 阅读 ·
5 点赞 ·
0 评论 ·
21 收藏

Pandas和SQL行转列,pivot_sum(case…)

在Pandas中,可以使用pivot方法将行转换为列,这通常被称为“透视”操作。以下是一个简单的例子来说明如何进行行转列:输出:输出:Category在这个例子中,index参数指定了哪一列作为新DataFrame的行索引,columns参数指定了哪一列的值将作为新DataFrame的列名,而values参数指定了哪一列的值将填充到新DataFrame中。请注意,pivot方法要求索引/列名组合必须是唯一的,也就是说,每个Category和Year的组合必须是唯一的。
原创
发布博客 2024.10.03 ·
445 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

Leecode SQL 197. Rising Temperature 日期差用 DATEDIFF()

不可以写 w.recordDate = y.recordDate+ 1 因为是日期,跨月份会找不出来!
原创
发布博客 2024.10.02 ·
448 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Leecode SQL 184. Department Highest Salary 找出tie

要找出 tie 的 highest salary!
原创
发布博客 2024.10.02 ·
558 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Leecode SQL 183. Customers Who Never Order

注意,不能按name筛选!
原创
发布博客 2024.10.02 ·
240 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

SQL_WHERE子句里不能出现COUNT()

但是,如果你想基于某个计数来过滤记录,你可以使用 HAVING 子句,而不是 WHERE 子句。HAVING 子句在功能上与 WHERE 子句相似,但它是针对分组后的数据进行过滤的。这个查询会返回 column1 的值和每组的记录数,但只有当 column1 相同的记录数大于 1 时才会被包括在结果中。如果你确实想在 WHERE 子句中使用类似 COUNT() 的逻辑,你可能需要使用子查询或者 JOIN 操作来实现。请注意,过度使用子查询可能会导致性能问题,特别是在处理大量数据时。
原创
发布博客 2024.10.02 ·
655 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

SQL 找出第二高的 salary

找出第二高的 salary。
原创
发布博客 2024.10.02 ·
167 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Leecode pandas groupby keep cols 1070. Product Sales Analysis III

【代码】Leecode pandas groupby keep cols 1070. Product Sales Analysis III。
原创
发布博客 2024.10.02 ·
327 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

如何在 Pandas 中对 dataframe 进行 groupby 并保留列?

在此示例中,sales_data.groupby(‘product’) 按 ‘product’ 列对销售数据进行分组,而 agg({‘quantity_sold’: [‘sum’, ‘mean’]}) 将 sum 和 mean 函数应用于每个组的 ‘quantity_sold’ 列。结果是一个包含所有原始列的新 DataFrame 和一个新列 ‘quantity_sold_sum’,其中包含每个组的 ‘quantity_sold’ 列的总和。如果要将所有原始列保留在分组的 DataFrame 中,
翻译
发布博客 2024.10.02 ·
140 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Maximum_Likelihood

*应用到科学方法论,We can measure the distance of a theory to the real world data, ie, to examine a theory is good or bad, using likelihood. **例:两个盒子,一个有5个黑球5个白球,另一个有9个黑球1个白球。现抽4次,每次放回地抽1个球。问最可能从哪个盒子抽的。例,无穷多个盒子,它们有黑球的比例是从0到1不等。抽4次,4个都是黑球。
原创
发布博客 2024.10.01 ·
908 阅读 ·
25 点赞 ·
0 评论 ·
17 收藏

Correlated_Covariance_Independence

这就是为什么 uncorrelated 不意味着 independence.也即,dependent variables 不一定 correlated.但是所有的 independent variables 都一定是 uncorrelated.我们学Correlated 是指相关性,相关性是指线性相关性就是两个变量有没有线性关系。你的其他的关系,他是他是不管的。
原创
发布博客 2024.10.01 ·
938 阅读 ·
10 点赞 ·
0 评论 ·
7 收藏

Total_Expectation_Conditional_Bias_Variance_Tradeoff

我们碰到的绝大多数都是 conditional 的probability。比如,given miu, sigma square, 才能讨论一个正态分布。
原创
发布博客 2024.10.01 ·
195 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Python_partial函数和map同时用

然后,我们使用 partial 来创建一个新的函数 multiply_by_three,它固定了 multiply 函数的第一个参数为3。在这个例子中,我们创建了一个 my_function 的部分函数 my_partial_function,它已经固定了参数 a=1 和 b=2。我们使用 partial 来创建一个新的函数 print_person_age,它固定了 print_age 函数的 fmt 参数。假设我们有一个列表的字典,我们想要提取每个字典中的特定key的值,并且对这个值应用一个函数。
原创
发布博客 2024.10.01 ·
445 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

为什么用参数模型解决维度灾难

模型结构:深度学习中的参数化模型,如深度神经网络(DNNs),通过其深层结构能够学习数据的非线性表示,这使得它们能够在高维空间中有效地捕捉复杂的模式。例如,主成分分析(PCA)就是一种常用的降维技术,它可以找到数据的主要变化方向,并将数据投影到这些方向上,从而降低维度。通过限制模型参数的复杂度,正则化帮助模型专注于最重要的特征,从而提高模型的泛化能力。总的来说,参数化模型通过假设数据的结构、利用降维技术、正则化、深层结构和计算优化等方法,能够在高维空间中有效地进行学习和预测,从而克服维度灾难。
原创
发布博客 2024.10.01 ·
373 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

Amazon EC2, S3 Bucket, Yaml file, Stack

例如,在AWS OpsWorks中,stack是指一组AWS资源,如EC2实例和RDS数据库,它们一起用于托管和管理应用程序的不同层。在AWS中,"stack"通常指的是AWS CloudFormation中的一个概念,它表示一组可以作为单个单元进行管理的AWS资源。总的来说,Amazon EC2提供了计算能力,Amazon S3提供了存储能力,YAML文件用于编写配置,而AWS CloudFormation 则用于自动化资源的部署和管理。通过CloudFormation,可以自动化资源的部署和管理过程。
原创
发布博客 2024.10.01 ·
938 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

PySpark把一列数据上下移动,时序数据

在 PySpark 中,确实存在一个类似于 Pandas 中 shift 函数的功能,它被称为 shiftleft 函数。不过,这与 Pandas 中的 shift 函数有所不同,后者用于将数据在时间序列中上下移动。如果想在 PySpark 中实现类似于 Pandas shift 的功能,即将 DataFrame 中的行或列向上或向下移动,你可以使用 lag 或 lead 函数。例如,如果你有一个整数列,并且你想要将每个值的二进制表示向左移动一位,你可以使用 shiftleft 函数。
原创
发布博客 2024.09.29 ·
472 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

各种环境,转换字符串为日期时间datetime

在SQL Server中,CONVERT()函数可以用于多种数据类型之间的转换,包括字符串到日期。当转换日期时,通常可以省略格式说明,只要字符串的格式是SQL Server能识别的。在 PySpark 的 SQL 模块中,to_date 是一个用于将字符串或数值类型转换为日期类型的函数。在MySQL中,你可以利用STR_TO_DATE()函数,这个函数需要两个参数:待转换的字符串和该字符串对应的日期格式。Oracle数据库使用TO_DATE()函数来转换字符串为日期,并且也需要你指定字符串的格式。
原创
发布博客 2024.09.29 ·
325 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

Pandas_构建dataframe的多种方法

使用pd.concat或pd.merge合并多个DataFrame。使用pd.DataFrame.from_records。使用pd.DataFrame.from_dict构建。使用pd.DataFrame.from_items。使用pd.DataFrame的构造函数。• 从Excel文件读取。使用Series对象构建。• 从SQL数据库读取。使用NumPy数组构建。• 从CSV文件读取。• 将字典的值作为列。• 将字典的键作为列。
原创
发布博客 2024.09.29 ·
388 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏
加载更多