【ACM】威佐夫博弈

版权声明:转载请注明出处 http://blog.csdn.net/TwT520Ly https://blog.csdn.net/TwT520Ly/article/details/71102010

问题描述

有两堆若干个物品,两个人轮流从两堆物品中取物,规定每次至少取一个,多者不限,取法分为两种:取走一堆中任意个物品,或从两堆中取走相同数目的物品,先取完所有物品的一方获胜。

过程推导

1.最佳策略

游戏过程中的任何状态都可以用一对正整数(n,m)来表示,其中另n≤m,分别表示两堆物品的个数。所有的状态分为两种:先手必胜或者后手必胜。在双方均采取最佳策略的情况下,前者表示下一个行动的玩家将取胜,后者表示下一个行动的玩家将落败。

因此,游戏的最佳策略:从一个先手必胜状态移动到任一后手必胜状态。

对于任一状态(n,m),可以采用递归的方式判断该状态是先手必胜还是后手必胜:(如果不好理解,记住就行)
1.(0,0)是后手必胜状态。
2.若一个状态的全部后续状态为先手必胜状态,则该状态为后手必胜状态。(因为该状态改变一次后可能出现的所有状态均为先手必胜,则对于该状态是先被改变一次,因此为后手)
3.若一个状态的后续中存在后手必胜状态,则该状态为先手必胜。

由上述定理可以推出:
1.对于任意正整数m,(0,m)和(m,m)都是先手必胜状态。
2.前几个后手必胜状态是:(1,2)、(3,5)、(4,7)、(6,10)、(8,13)

2.后手必胜状态的通式

后手必胜与黄金分割率有关。
若k为任意自然数,假设第k个后手必胜状态为(nk,mk),ϕ为黄金分割率,中括号表示高斯符号。满足:
nk=kϕ=mkϕmk
mk=kϕ2=nkϕ=nk+k

3.例题

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页