Windows下配置Caffe(CPU+GPU版本)

一.准备工作

1.window10(其他的windows版本应该也可以,本人只尝试了win10和win7)
2.Visual Studio2013(2015应该也可以,但是2017的问题比较多,建议使用VS2013)
3.Github安装

二.下载Caffe源码

从该网站克隆windows版本的Caffe源码
https://github.com/Microsoft/Caffe

三.源码处理

1.点开Caffe->windows,将example文件修改名字复制出一个新的文件。
这里写图片描述
2.修改CommonSettings.props文件(以CPU为例)
这里写图片描述
(1)CpuOnlyBuild改为true
(2)UseCuDNN修改为false
3.点击Caffe.sln文件,使用VS2013打开。
4.在项目的“解决方案‘Caffe’(16个项目)”右键生成解决方案,在这个过程中会安装NuGet,速度会比较慢。如果出现错误:‘alt_sstream_impl.hpp’的编码错误(一开始的错误会抛在libcaffe上,在libcaffe上点击生成方案就会出现这个编码错误),这时候在本地文件中找到该文件,用VS2013打开,然后保存即可。

4.mnist数据集测试

1.数据集介绍

  • train-images-idx3-ubyte.gz
  • train-labels-idx1-ubyte.gz
  • t10k-images-idx3-ubyte.gz
  • t10k-labels-idx1-ubyte.gz

2.将下载好的文件解压后放在examples->mnist->mnist_data文件夹下。
3.在根目录下面新建三个文件(文件名是任意的)
文件一: ”convert_mnist_data_train.bat”

Build\x64\Debug\convert_mnist_data.exe --backend=lmdb examples\mnist\mnist_data\train-images.idx3-ubyte examples\mnist\mnist_data\train-labels.idx1-ubyte examples\mnist\mnist_data\mnist_train_lmdb  
pause 

文件二: “convert_mnist_data_test.bat”

Build\x64\Debug\convert_mnist_data.exe --backend=lmdb examples\mnist\mnist_data\t10k-images.idx3-ubyte examples\mnist\mnist_data\t10k-labels.idx1-ubyte examples\mnist\mnist_data\mnist_test_lmdb  
Pause 

将生成的两个文件夹放在example->minist下面

文件三: “run.bat”

Build\x64\Debug\caffe.exe  train --solver=examples/mnist/lenet_solver.prototxt  
pause  

运行文件run.bat,如果运行成功,则配置完成。

参考链接:https://www.cnblogs.com/pkjplayer/p/7302075.html

5.编译windows下面的python接口–pycaffe

(1)修改配置文件CommonSettings.props

<PythonSupport>true</PythonSupport>
<PythonDir>C:\Python2\</PythonDir>

(2)去编译Release版本的pycaffe,如果是Debug的方式,可能出现python27_d.lib找不到。
解决方案:
修改Anaconda或者是Python文件夹的include文件夹的pyconfig.h文件:

#ifdef _DEBUG 
#   define Py_DEBUG 
#endif 

为:

#ifdef _DEBUG 
//# define Py_DEBUG 
#endif 

修改:

# ifdef _DEBUG 
# pragma comment(lib,"python27_d.lib") 
# else 
# pragma comment(lib,"python27.lib") 
# endif /* _DEBUG */ 

为:

# ifdef _DEBUG 
# pragma comment(lib,"python27.lib") 
# else 
# pragma comment(lib,"python27.lib") 
# endif /* _DEBUG */ 

此时在VS2013中的pycaffe上右键生成,成功编译后将caffe\Build\x64\Debug\pycaffe\caffe这个文件夹复制到Anaconda2的Lib文件夹的site-packages下面。
(3)测试接口,在python2的环境下

import caffe

如果出现错误:

ImportError:No module named protobuf

这个时候可以

  • conda install protobuf
  • pip2 install protobuf
  • 下载protobuf源码,在protobuf的python子文件夹下面,python setup.py build, python setup.py test, python setup.py installl

然后再import caffe,一般来说就可以了。pycaffe配置完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值