分布统计与时间数据可视化

一、分布统计

  • 某个特征下值的分布情况的可视化
  • 检查特征的分布情况可以了解数据对象的很多特性

1、基于value_counts统计值的分布情况

value_count() 的参数:

  • normalize : boolean, default False ,如果为True,则返回的对象将包含唯一值的相对频率。
  • sort : boolean, default True , 按值排序
  • ascending : boolean, default False , 按频率计数升序排序
  • bins : integer, optional 而不是数值计算,把它们分成半开放的箱子,一个方便的pd.cut,只适用于数字数据
  • dropna : boolean, default True , 不包括NaN的数量。

对数据进行预处理:

import numpy as np
import pandas as pd
import json
from pandas.io.json import json_normalize
import pyecharts as pe
from collections import Counter

op1=open(r'D:\python学习\数据分析与可视化数据\shoes.json', 'r',encoding='utf-8')
li=[]
dict1={
   }
for i in op1:
    k=json.loads(i.encode("utf-8"))#把字符串转换为json
    li.append(k)
a=json_normalize(li)#把由json数据构成的列表转换成数据框

a.sales=a.sales.str.split("人",expand=True)[0]
a.sales = a.sales.astype(np.int64)#转换列的类型为整数
a.price = a.price.astype(np.float)

统计加排序:

from pyecharts.globals import ThemeType
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.charts import Line

p1 = a.price.value_counts()#按价格进行统计
p1

p1.sort_index(inplace=True)#对p1的索引进行排序,做线图需要排序

数据处理好后绘制图:

#排好序后,我吧索引作为x轴,值作为y轴
f1=Line().add_xaxis(p1.index.tolist()).add_yaxis("price", p1.tolist
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值